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New quantum obstructions to sliceness

Lukas Lewark and Andrew Lobb

Abstract

It is well known that generic perturbations of the complex Frobenius algebra used to define
Khovanov cohomology each give rise to Rasmussen’s concordance invariant s. This gives a
concordance homomorphism to the integers and a strong lower bound on the smooth slice genus
of a knot. Similar behavior has been observed in sl(n) Khovanov–Rozansky cohomology, where
a perturbation gives rise to the concordance homomorphisms sn for each n � 2, and where we
have s2 = s.

We demonstrate that sn for n � 3 does not in fact arise generically, and that varying the
chosen perturbation gives rise both to new concordance homomorphisms and to new sliceness
obstructions that are not equivalent to concordance homomorphisms.
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1. Introduction

1.1. History

In [9] Khovanov and Rozansky gave a way of associating, for each n � 2, a finitely generated
bigraded complex vector space to a knot K. It arises as the cohomology of a cochain complex

· · · −→ Ci−1,j
xn (D) −→ Ci,j

xn (D) −→ Ci+1,j
xn (D) −→ · · ·

defined from any diagram D of K which is invariant under Reidemeister moves up to cochain
homotopy equivalence. We write this vector space as

Hi,j
xn (K),

and refer to i ∈ Z as the cohomological grading and j ∈ Z as the quantum grading. This
bigraded vector space exhibits as its graded Euler characteristic∑

i,j

(−1)iqj dimCH
i,j
xn (K)

the Reshetikhin–Turaev polynomial of K associated to the fundamental irreducible represen-
tation of sl(n).
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The reason for the subscript xn in the notation is that in the definition of H a choice is
made of a polynomial w ∈ C[x]. Khovanov and Rozansky took w = xn+1 as their polynomial
but what is important for the definition is really the first derivative of w, and that only up to
multiplication by a non-zero complex number. We record this renormalized first derivative in
the subscript.

In fact there is a cohomology theory associated to each degree n monic polynomial ∂w ∈ C[x]
(we write ∂w to remind of us of the connection with the first derivative) which we write as

Hi
∂w(K).

We refer to ∂w as the potential of the cohomology theory. Note that the cohomology theoryHi
∂w

keeps a cohomological grading but does not necessarily retain a quantum grading. However,
for any choice of ∂w, there is at least a quantum filtration on the cohomology:

· · · ⊆ Fj−1Hi
∂w(K) ⊆ FjHi

∂w(K) ⊆ Fj+1Hi
∂w(K) ⊆ · · · ,

arising from a filtration on the cochain complex associated to a diagram

· · · −→ FjCi−1
∂w (D) −→ FjCi

∂w(D) −→ FjCi+1
∂w (D) −→ · · · .

The filtered cochain homotopy type of the cochain complex was shown to be an invariant of
K, as described by Wu [26].

We write the bigraded vector space associated to the filtration as

GrjHi(K) = F jHi
∂w(K)/Fj−1Hi

∂w(K).

Gornik was the first to consider a choice of ∂w different from xn; he took ∂w = xn − 1. In [7],
Gornik showed that, for any diagram D of a knot, Hxn−1(D) is of dimension n and is supported
in cohomological degree 0 and furthermore he observed that there is spectral sequence with
E1 page isomorphic to Hi,j

xn (K) and abutting to GrjHi
xn−1(D). Given a diagram D, the E0

page of the spectral sequence can in fact be identified with the standard Khovanov–Rozansky
cochain complex

F jCi
∂w(D)/F j−1Ci

∂w(D) ≡ Ci,j
xn (D).

This work of Gornik’s can be considered a generalization of Lee’s result in Khovanov
cohomology [13] which essentially proved this for the case n = 2 (in work that predated the
definition of Khovanov–Rozansky cohomology).

In works by the second author [18] and by Wu [26], this result of Gornik’s was generalized to
the case where ∂w has n distinct roots. Furthermore, the quantum gradings on the E∞ pages
of the associated spectral sequences were shown to give rise to lower bounds on the smooth
slice genus of a knot.

These results should be thought of as a generalization of Rasmussen’s seminal work [24]. This
derived from Khovanov cohomology a combinatorial knot invariant s(K) ∈ Z and an associated
lower bound |s(K)| on the slice genus sufficiently strong to reprove Milnor’s conjecture on the
slice genus of torus knots (our normalization of s differs from Rasmussen’s). We summarize:

Theorem 1.1 (Gornik, Lobb, Wu). Suppose ∂w ∈ C[x] is a degree n polynomial which is
a product of distinct linear factors and K is a knot. Then there is a spectral sequence, itself a
knot invariant, with E1 page Hi,j

xn (K) and abutting to GrjHi
∂w(K).

Furthermore, GrjHi
∂w(K) is supported in cohomological degree i = 0 and is of rank n. We

can write j1(K) � j2(K) � · · · � jn(K) so that GrjHi
∂w(K) is isomorphic to the direct sum of

n 1-dimensional vector spaces supported in bidegrees (0, jr).
If K0 and K1 are two knots connected by a connected knot cobordism of genus g, then

|jr(K0) − jr(K1)| � 2(n− 1)g for 1 � r � n.
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It follows from this and knowing the cohomology of the unknot that we must have

g∗(K) � 1
2(n− 1)

|jr(K) − 2r + n+ 1| for 1 � r � n,

where we have written g∗(K) for the slice genus of K.

The corresponding result in Khovanov cohomology, which can be thought of as the case
n = 2 of Khovanov–Rozansky cohomology, admits a much neater formulation than that of
Theorem 1.1. This is because of the work by Mackaay, Turner, and Vaz [21] who proved the
following:

Theorem 1.2 (Mackaay, Turner, Vaz). Suppose we are in the situation of Theorem 1.1
with n = 2. Then we have that j1(K) = 2s(K) − 1 and j2(K) = 2s(K) + 1.

It follows that, in the case n = 2, varying ∂w among quadratics with two distinct roots does
not change the invariant GrjHi

∂w(K), which is always equivalent to Rasmussen’s invariant
s(K).

For Gornik’s prescient choice of ∂w the second author [20] showed that a similar ‘neatness’
result holds for general n.

Theorem 1.3 (Lobb). Taking ∂w = xn − 1 we have that jr = 2(n− 1)sn(K) − n+ 2r − 1
for some knot invariant sn(K). Furthermore, sn is a homomorphism from the smooth
concordance group of knots to the integers (1/(n− 1))Z.

As in the case n = 2, this Theorem 1.3 shows that GrjHi
xn−1(K) is bigraded isomorphic to the

cohomology of the unknot but shifted in the quantum direction by an integer 2(n− 1)sn(K).
Taken with computations in [18, 26], Theorem 1.3 demonstrates that sn is a slice-torus

invariant (in that it is a concordance homomorphism and its absolute value provides a bound
on the smooth slice genus which furthermore is tight for all torus knots). This establishes
shared properties of sn with Rasmussen’s invariant s = s2 and with the invariant τ arising
from knot Floer homology. The first author showed that these invariants are not all equal [16],
and in fact it seems probable that {τ, s2, s3, . . .} is an infinite family of linearly independent
invariants.

However, sn do not comprise all slice genus bounds obtainable from separable potentials! In
the light of Theorem 1.2 it might be guessed that the integers jr(K, ∂w) of Theorem 1.1 are
in fact each equivalent to the single integer sn(K) in the sense of Theorem 1.3. This guess is
wrong.

In fact we shall see that for n � 3, two different degree n separable potentials can induce
different filtrations on the unreduced cohomology. These filtrations do give rise to slice genus
lower bounds, but not in general to concordance homomorphisms (see Question 4.4). However,
a separable potential ∂w and a choice of a root α of that potential gives a reduced cohomology
theory from which one can extract a slice-torus concordance homomorphism. In this way we
shall recover the classical sn as well as a host of new invariants.

One may compare the results in this paper with the recent results due to Ozsváth, Stipsicz
and Szabó [22] in which they determine that varying the filtration on Knot Floer homology
gives rise to a number of different concordance homomorphisms. One may consider their family
of homomorphisms to be obtained by varying the slope of a linear function, while ours are
obtained by varying all coefficients of a degree n polynomial.

A relatively simple knot exhibiting interesting cohomologies for different choice of potential
is the knot 10125. We invite the reader to spend the next subsection exploring this knot.
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Figure 1 (colour online). The pretzel knot P (2,−3, 5) prior to baking (thanks to Kate Horner
and Lauren Scanlon for the image).

Figure 2. A less appetizing diagram of the pretzel knot P (2,−3, 5).

1.2. An appetizing example

The pretzel knot P (2,−3, 5) appears in the knot table as 10125, and we shall refer to this knot
as P for the remainder of this subsection (Figure 1 and 2).

In Tables 1 and 2 we give the reduced and unreduced Khovanov–Rozansky cohomologies
of P for n = 2 and n = 5 (there is no particular reason to choose 5 over some other integer,
but we just want to be explicit). We encourage the reader to get her hands dirty with a few
spectral sequences starting from these cohomologies in order to appreciate something of the
phenomena discussed in this paper.

Suppose, for example, that we want to apply Corollary 2.5 in order to compute s2(P ) and
s5(P ) from the reduced cohomologies. We are looking for spectral sequences starting from
E1-pages the reduced cohomologies of Figures 1 and 2, and which have as their final pages
1-dimensional cohomologies supported in cohomological degree 0. The differentials on the page
Ei increase the cohomological grading by 1 and decrease the quantum grading by 2i.

In Table 1 we give the only possible spectral sequence from E1 = H̃x2(K) to a 1-dimensional
E∞ page supported in cohomological degree 0, but in the other figure the reader will discover
two such a priori possible E∞ pages starting from E1 = H̃x5(K).

There is better luck to be had in using the unreduced spectral sequences of Theorem 1.3. In
the unreduced case the final page is again supported in cohomological degree 0, but now it is
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Table 1. Unreduced and reduced (the latter printed in yellow boxes) x2-cohomology of the
(2,−3, 5)-pretzel knot. Non-trivial differentials on the second page of the spectral sequence
associated to reduced cohomology with a separable potential are drawn as arrows.

��������q
t −3 −2 −1 0 1 2 3 4 5

−9 1

−8 1

−7

−6 1 �
���

−5 1 1

−4 1

−3 1

−2 2 �
���

−1 1

0 1 �
���

1 2 1

2 2

3 1

4 1 �
���

5 1 1

6 1

7

8 1 �
���

9 1

of dimension n (so 2 or 5 in the cases under consideration). Furthermore, the only non-trivial
differentials in the spectral sequence decrease the quantum grading by multiples of 2n.

From this we can observe that s2(P ) = 1 and s5(P ) = 1
4 . The question arises: how far is it

accidental that we were unable to compute s5(P ) merely from looking at H̃x5(K)? It turns out
that this failure was inevitable once we determined that s5(P ) is nonintegral, as we shall see
later in Section 2.3.

We ask the reader to return to the unreduced cohomology of Table 2. Now look for spectral
sequences from this E1 page in which all nontrivial differentials decrease the quantum grading
by multiples of 2(n− 1) = 8, and in which the final page is again of dimension n = 5 supported
in cohomological degree 0. Whichever spectral sequence of this kind one finds, the final page
never has the appearance of a shifted unknot as in Theorem 1.3. Such a spectral sequence
would arise from the potential ∂w = x5 − x (demonstrating, for example, the nonvalidity of
the Theorem 1.3 for this new choice of separable potential).

Finally, consider again the reduced cohomology of Table 2, and look for a spectral sequence
in which all non-trivial differentials decrease the quantum grading by multiples of 2(n− 1) = 8
and the final page is of dimension 1 and is supported in cohomological degree 0. There is
exactly one such spectral sequence for the knot in question.

In general, given a choice of degree n separable potential ∂w and a root α of that potential,
there is a corresponding spectral sequence from reduced sl(n) cohomology to a 1-dimensional
final page supported in cohomological degree 0. In this particular case, the spectral sequence
corresponds to the separable potential x5 − x and the choice of root x = 0.

Furthermore, the surviving quantum degree, written as 2(n− 1)s̃x5−x,0(K), gives a
slice-torus knot invariant s̃x5−x,0 generalizing s5. Note that for the knot in question
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Table 2. Unreduced and reduced (the latter printed in yellow boxes) x5-cohomology of the
(2,−3, 5)-pretzel knot.

������q
t −3 −2 −1 0 1 2 3 4 5

−18 1

−16 1

−14 1 1 1

−12 1 1

−10 1 1 1

−8 1 1 1

−6 1 1 1 1 1

−4 2 1

−2 2 2 2 1

0 1 3 2

2 1 2 3 1

4 1 3

6 1 1 1 1 1

8 1 1 1

10 1 1 1

12 1 1

14 1 1 1

16 1

18 1

we have
s̃x5−x,0(P ) = 0 �= 1

4 = s5(P ).

We shall revisit the knot P in Section 2.3 where we shall shine more light on the concrete
phenomena observed above.

1.3. Summary

In Section 2, we give the definitions and prove the basic properties of the slice genus lower
bounds coming from separable potentials; in particular, it is shown that not only unreduced,
but also reduced Khovanov–Rozansky cohomologies induce lower slice genus bounds, which
are actually more well behaved than the unreduced bounds: they are all concordance
homomorphisms (in particular, slice-torus invariants). We close by reanalyzing the example
of the pretzel knot P = P (2,−3, 5) in the light of the properties we have established. We
expect that these results generalize to slice genus bounds for multi-component links, in the
appropriate sense; but for the sake of simplicity we restrict ourselves to knots.

Section 3 introduces the notion of KR-equivalent potentials: potentials inducing homotopy
equivalent filtered cochain complexes for all links. We show that there are at most countably
many KR-equivalence classes, and that one of them is generic. By analyzing the cohomology
of the trefoil, we establish that there are at least n− 1 KR-equivalence classes.

Section 4 exhibits further characteristics of the sliceness obstructions, which are much more
complex than one would have reasonably guessed from what was previously known.

Section 5 discusses the simple form of the cochain complexes of bipartite knots, and
the program khoca (knot homology calculator) that calculates their Khovanov–Rozansky
cohomologies.
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1.4. Conventions

For the most part we shall follow the conventions of [9]. These amount to choosing the degree of
the variable x to be 2, and deciding in which cohomological degrees the complex associated to a
positive crossing is supported (in degrees 0 and 1). These choices have the consequence that
the cohomology of the positive trefoil is supported in nonnegative cohomological degrees but in
negative quantum degrees. This negative quantum support is in contrast to the situation of the
normalization of standard Khovanov cohomology. Since we encounter Khovanov cohomology
only as the case n = 2 of Khovanov–Rozansky cohomology, we are going to be normalizing the
Rasmussen invariant s = s2 so that it is negative on the positive trefoil.

2. The slice genus lower bounds from separable potentials

2.1. Reduced cohomology and slice-torus invariants

Given a knot K with marked diagram D, the Khovanov–Rozansky cohomology H∂w(K) has
the structure of a module over the ring C[x]/∂w. In fact, it is the cohomology of a cochain
complex C∂w(D) of free modules over C[x]/∂w.

This statement is best visualized by cutting the diagram D open at a point marked with
the decoration x and thus presenting D as a (1, 1)-tangle. Using Murakami-Ohtsuki-Yamada
(MOY) moves, each cochain group can then be identified with finite sums of quantum-shifted
matrix factorizations corresponding to the crossingless (1, 1)-tangle. Closing all of these trivial
tangles gives the complex associated to the uncut diagram D, and each circle now appearing
corresponds to a copy of C[x]/∂w.

This module structure seems at first sight as if it may have some dependence on the choices
of diagram and of marked point. However, if T is a tangle with endpoints labeled x1, x2, . . . , xr,
then the Khovanov–Rozansky functor gives a complex of (vectors of) matrix factorizations over
the ring C[x1, x2, . . . , xr]. Reidemeister moves on T give homotopy equivalent complexes via
homotopy equivalences respecting the ground ring. As a consequence, the C[x]/∂w-module
structure on the Khovanov–Rozansky cohomology is invariant under Reidemeister moves
performed on the (1,1)-tangle. Finally, it is an exercise for the reader to see that if D and
D′ are two Reidemeister-equivalent diagrams (each with a marked point on corresponding
link components), then D and D′ can be connected by a sequence of Reidemeister moves
that take place away from the marked points and which take the marked point of D to
that of D′.

In the case of standard Khovanov–Rozansky cohomology with ∂w = xn, the action of x on
the cochain complex preserves the cohomological grading and raises the quantum grading by
2. For explicitness we make a definition.

Definition 2.1. We define the reduced Khovanov–Rozansky cohomology H̃xn(K) of a
knot K to be the cohomology of the cochain complex (xn−1)Cxn(D)[1 − n], where the closed
brackets denote a shift in quantum filtration.

The reduced Khovanov–Rozansky cohomology H̃xn has as its graded Euler characteristic the
Reshetikhin–Turaev sl(n) polynomial normalized so that the unknot is assigned the polynomial
1 ∈ Z[q±1].

Remark 2.2. We note that in the literature the reduced Khovanov cohomology, for
example, is often defined in such a way that its graded Euler characteristic is the Jones
polynomial with a surprising normalization: the unknot is assigned polynomial q−1 ∈ Z[q±1].
We consider our convention to be possibly a little more natural.
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We now wish to give a good definition for a reduced Khovanov–Rozansky cohomology of a
knot K using a separable potential ∂w, that is, a potential that is the product of distinct linear
factors:

∂w =
n∏

i=1

(x− αi).

For any marked diagram D of K, H∂w(K) is the cohomology of a cochain complex C∂w(D) of
free (C[x]/∂w) modules, inducing a (C[x]/∂w)-module structure on H∂w(K). In fact, we know
that H∂w(K) is n-dimensional and that the action of x on H∂w(K) splits the cohomology into
n 1-dimensional eigenspaces with eigenvalues α1, α2, . . . , αn. In other words, H∂w(K) is a free
rank 1 module over the ring C[x]/∂w. The reader should note, however, that the quantum
filtration of H∂w(K) need not correspond to an overall shift of the usual filtration on C[x]/∂w.

Definition 2.3. Suppose that α is a root of the degree n monic separable polynomial ∂w.
We define H̃∂w,α(K) (the (∂w, α)-reduced cohomology of the knot K with marked diagram D)
to be the cohomology of the cochain complex

C̃∂w,α(D) :=
(

∂w

x− α

)
C∂w(D)[1 − n],

where the square brackets denote a shift in the quantum filtration.

First note that H̃∂w,α(K) is certainly a knot invariant, this follows from a similar, but
not totally isomorphic, discussion to that appearing at the start of this section: the cochain
complex C̃∂w,α(D) is a quantum-shifted subcomplex of C∂w(D). If D and D′ are marked-
Reidemeister-equivalent marked diagrams (and the Reidemeister moves take place away from
the marked point), then C∂w(D) and C∂w(D′) are cochain homotopy equivalent C[x]/∂w-
cochain complexes (where the x corresponds to the marked point). The homotopy equivalences
can then be restricted to the subcomplexes C̃∂w,α(D) and C̃∂w,α(D′) with no modification (this
is really an argument for a general ring R about subcomplexes of R-complexes given by the
action of an ideal of R).

We note that one should not expect, in general, that H̃∂w,α(K) is filtered-isomorphic to
(∂w/(x− α))H∂w(K)[1 − n] (which is also a knot invariant). Indeed, we shall see examples
where it certainly differs.

The shift in the quantum degree is to ensure that H̃∂w,α(U) has Poincaré polynomial 1 for
U the unknot and any choice of (∂w, α). We shall show

Theorem 2.4. For any knot K and for each separable choice of (∂w, α), the reduced
cohomology H̃∂w,α(K) is 1-dimensional. Furthermore, there exists a spectral sequence with

E1-page H̃i,j
xn (K) and E∞-page GrjH̃i

∂w,α(K).

Taking Gornik’s choice of potential, we obtain a corollary.

Corollary 2.5. For any knot K there exists a spectral sequence with E1-page H̃xn(K)
such that the E∞-page is 1-dimensional and has Poincaré polynomial q2(n−1)sn(K) ∈ Z[q, t].

This corollary is not surprising, and may even be considered ‘folklore’, but as far as we know
there is no proof in the literature.

Since the reduced cohomology for a separable potential is always 1-dimensional we can make
another definition.
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Definition 2.6. For a knot K and (∂w, α) as above, we define the (∂w, α) reduced slice
genus bound s̃∂w,α(K) ∈ (1/(n− 1))Z to be 1

2 (n− 1) times the j-grading of the support of the
1-dimensional vector space GrjH̃0

∂w,α(K)

We have taken this choice of normalization so that we have

s̃∂w,α(T (2, 3)) = sn(T (2, 3)) = −1,

for any choice of n and of (∂w, α) where we write T (2, 3) for the positive trefoil.

Definition 2.7 (cf. [16, 17]). Let S : C → R be a homomorphism from the smooth
concordance group of oriented knots to the reals. We say that S is a slice-torus
invariant if

(1) g∗(K) � |S(K)| for all oriented knots K, where we write g∗(K) for the smooth slice
genus of K.

(2) S(T (p, q)) = −(p− 1)(q − 1)/2 for T (p, q) the (p, q)-torus knot.

Theorem 2.8. Suppose that α is a root of the degree n monic separable polynomial ∂w.
Then we have that s̃∂w,α defines a map

s̃∂w,α : C −→ 1
2(n− 1)

Z

which is a slice-torus invariant.

Before proving Theorems 2.4 and 2.8, we remind the reader of the work of Gornik’s [7] which
established cocycle representatives for cohomology with a separable potential. (In fact Gornik
considered only the potential ∂w = xn − 1, but his arguments apply to all separable potentials
without critical change.)

Fix any separable ∂w with roots α1, . . . , αn, and let Γ be a MOY graph. The cohomology of
Γ, which we shall write simply as h∂w(Γ), is a filtered complex vector space. If Γ occurs as a
resolution of some link diagram D, then h∂w(Γ) appears on a corner of the Khovanov–Rozansky
cube as a cochain group summand of C∂w(D).

A basis for h∂w(Γ) is given by all admissible decorations of Γ, that is, all decorations of the
thin edges of Γ with roots of ∂w satisfying the admissibility condition. This condition is the
requirement that at each thick edge two distinct roots decorate each entering thin edge, and
the same two roots decorate the exiting thin edges.

If we let Γ vary over all resolutions of a diagram D, we thus then obtain a basis for
each cochain group Ci

∂w(D). By considering how the Khovanov–Rozansky differential acts
on the bases, Gornik showed that a basis for the cohomology H∂w(D) is given by cocycles
corresponding to decorations that arise in the following way. Starting with a decoration by
roots of ∂w of the components of D, take the oriented resolution at crossings where the roots
agree and the thick-edge resolution at crossings where the roots differ. For each such decoration
of components of D by roots, this produces a resolution Γ and a cocycle in h∂w(Γ) ⊆ C∂w(D)
surviving to cohomology. In the case that D is a diagram of a (1-component) knot, it follows
that Gornik’s cocycle representatives live in the summand of the cohomological degree 0 cochain
group corresponding to the oriented resolution of D.

Essentially, Gornik’s argument proceeded by Gauss elimination, grouping other basis
elements into canceling pairs and leaving only the generating cocycles described above.
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Lemma 2.9 (Gauss Elimination as in [2]). In an additive category with an isomorphism h,
the cochain complex

. . . �� P
( ∗

g )
�� Q⊕R

(
h i
j k

)
�� S ⊕ T

( ∗ � ) �� U �� . . .

is homotopy equivalent to

. . . �� P
g �� R

k − jh−1i �� T
� �� U �� . . . .

More explicitly, we describe the situation in the case of knots. Let D be any knot diagram,
and let O(D) be the oriented resolution of D. We define

h∂w(O(D)) :=

(⊗
c

C[xc]/∂w(xc)[1 − n]

)
[(1 − n)w(D)]

where the tensor product is taken over all components c of O(D) and w(D) stands for the
writhe of D. Now h∂w(O(D)) is naturally a summand of the cochain group C0

∂w(D). Let

∂w =
n∏

i=1

(x− αi),

then for any knot diagram D there exist n linearly independent cocycles

gD
αi

∈ h∂w(O(D)) ⊆ C0
∂w(D) for 1 � i � n

given by

gD
αi

=
⊗

c

1
∂w′(αi)

(
∂w(xc)
xc − αi

)
.

Theorem 2.10 (Gornik [7]). These cocycles gD
αi

descend to give a basis for the cohomology

H0
∂w(D). Furthermore, there is a spectral sequence with E1-page Hi,j

xn (D) abutting to
GrjHi

∂w(D).

Gornik’s proof of the existence of the spectral sequence relied on identifying the E0-page of
the spectral sequence associated to the filtered complex C∂w(D) with the Khovanov–Rozansky
cochain complex Cxn(D).

Now we have enough to prove the theorems stated earlier.

Proof of Theorem 2.4. First note that Gornik’s proof that the unreduced cohomol-
ogy H∂w(K) is n-dimensional also demonstrates that the reduced H̃∂w,α cohomology is
1-dimensional. To see this, observe that the reduced cohomology is the cohomology of a
subcomplex C̃∂w,α(D) of C∂w(D)[1 − n], where D is a marked diagram for K. The subcomplex
is spanned by exactly 1/n of Gornik’s generators for C∂w(D)[1 − n] (those with the decoration
α at the marked thin edge). These generators can be Gauss-eliminated following Gornik’s
recipe, leaving just one cocycle

gD
α ∈ C̃∂w,α(D) ⊆ C∂w(D)[1 − n]

which generates the cohomology.
To show the existence of the spectral sequence we wish to see that the E0-page associated to

C̃∂w,α(D) corresponds exactly to the complex xn−1Cxn(D) which computes standard reduced
cohomology. The invariance of the spectral sequence under choice of diagram is automatic: the
spectral sequence in question is just that associated to the filtered complex C̃∂w,α(D), whose
filtered homotopy type we know is independent of the diagram.
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We shall proceed by using the restriction of the correspondence between the E0-page of the
spectral sequence associated to the filtered complex C∂w(D) with the Khovanov–Rozansky
cochain complex Cxn(D).

Let Γ be a resolution of D, inheriting the marked point of D. Then hxn(Γ) is a C[x]/xn-
module, and h∂w(Γ) is a C[x]/∂w-module. To see the module structures, perform MOY
decompositions away from the marked point until you arrive at a single marked circle. This
gives the module structures explicitly as

hxn(Γ) =
⊕

i

(C[x]/xn)[ai]

and
h∂w(Γ) =

⊕
i

(C[x]/∂w)[ai]

for a finite sequence of integers {ai} where the first decomposition is as graded modules, and
the second as filtered modules.

The conclusion we want is almost clear from this, we just need to say a bit more about the
module structures.

From the definition by matrix factorizations, h∂w(Γ) is the cohomology of a 2-periodic
complex of free C[x]-modules where the modules are graded and the differentials are filtered.
On the other hand, hxn(Γ) arises as the cohomology of the 2-periodic complex with the same
cochain groups but where just the top-degree components of the differential are retained.

For any ψ ∈ h∂w(Γ), write ψ′ ∈ hxn(Γ) for the associated graded element. Then observe that
if q(x) is a polynomial in x with leading term xr, we have (q(x)ψ)′ = xrψ′ if and only if they
are of the same grading.

Now it is clear that the associated graded vector space to (∂w/(x− α))h∂w(Γ) is exactly
xn−1hxn(Γ).

Now we prove the second theorem.

Proof of Theorem 2.8. Firstly we show that |s̃∂w,α(K)| is a lower bound for the slice genus
of K. We make use of the arguments already given in the unreduced case by Lobb and Wu,
which we briefly summarize here.

To each Morse move (otherwise known as handle attachment), from a diagramD to a diagram
D′, there is associated a cochain map C∂w(D) → C∂w(D′). This cochain map is filtered of
degree n− 1 in the case of a 1-handle attachment, and of degree 1 − n for 0- and 2-handle
attachments. Taking these together with the homotopy equivalences between Reidemeister
equivalent cochain complexes gives a way to associate a filtered cochain map to a representation
of a link cobordism. Specifically, given a movie M of a cobordism between diagrams D0 and
D1, by composing the cochain maps we already have, we can thus associate a filtered cochain
map

M∗ : C∂w(D0) −→ C∂w(D1).

Adding up the contributions from the various maps, we observe that this map is filtered of
degree (1 − n)χ(M) where we write χ(M) for the Euler characteristic of the surface represented
by M .

Finally, one shows that if M is a movie of a connected cobordism between the two knot
diagrams D0 and D1, then M∗(gD0

α
) is a non-zero multiple of gD1

α
for α any root of ∂w. Hence,

we see that M∗ induces an isomorphism on cohomology.
The slice genus bound statements in Theorem 1.1 follow immediately.
For the reduced statement, we note that the cochain maps on the unreduced cochain

complexes induced by handle moves and Reidemeister moves on marked diagrams respect
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the C[x]/∂x structure of the cochain groups. Hence by restriction they also induce maps on
the reduced cochain complexes.

We now take a marked movie M (which can be thought of as describing a cobordism together
with an embedded arc without critical points) between the marked diagrams D0 and D1. This
induces a map

M∗ : C̃∂w,α(D0) −→ C̃∂w,α(D1),

again of filtered degree (1 − n)χ(M). Note, furthermore, that the generator of the cohomology
is preserved since this map is just a restriction of the unreduced map which does preserve the
generator.

This dispenses with the question of whether |s̃∂w,α(K)| is a lower bound for the slice genus
of K. That this bound is tight for torus knots (and in fact for all positive knots) is immediate
from consideration of a positive diagram.

Finally we show that s̃∂w,α is a concordance homomorphism. From the 0-crossing diagram of
the unknot U we know that s̃∂w,α(U) = 0, it therefore remains to show that s̃∂w,α(K1#K2) =
s̃∂w,α(K1) + s̃∂w,α(K2), where we write # for the connect-sum operation.

Let then D1 and D2 be two marked diagrams, and let D = D1#D2 be the marked diagram
formed by the connect sum, with the connect sum taking place at the marked point.

We write Φ for the map

Φ : C∂w(D1) ⊗C C∂w(D2) −→ C∂w(D)

induced by 1-handle addition to the diagram D1 	D2. Let Γ1 and Γ2 be MOY resolutions of
D1 and D2, respectively, and let Γ = Γ1#Γ2 be the corresponding resolution of D.

By repeated MOY simplification away from the marked points, we can reduce Γ1 	 Γ2 to the
disjoint union of two marked circles U1 and U2. Performing the same MOY simplification to
Γ, we can reduce to the marked circle U1#U2. Thus for {ai} being a finite sequence of integer
shifts we see that Φ restricted to the cochain group summand S := h∂w(Γ1) ⊗C h∂w(Γ2) is the
map

Φ|S :
⊕

i

(C[x1, x2]/(∂w(x1), ∂w(x2)))[ai] −→
⊕

i

(C[x]/∂w(x))[ai]

given by ‘multiplication’ or, in other words, the identification x1 = x2 = x.
Restricting Φ to the shifted subcomplex C̃∂w,α(D1) ⊗ C̃∂w,α(D2), the restriction to the

corresponding summand

S̃ :=
∂w(x1)
x1 − α

h∂w(Γ1) ⊗ ∂w(x2)
x2 − α

h∂w(Γ2)[2 − 2n]

is projectively the map

Φ|S′ :
⊕

i

∂w(x1)
x1 − α

∂w(x2)
x2 − α

(C[x1, x2]/(∂w(x1), ∂w(x2)))[2 − 2n+ ai]

−→
⊕

i

∂w(x)
x− α

(C[x]/∂w(x))[1 − n+ ai]

again given by multiplication.
This is a filtered degree 0 isomorphism of vector spaces with filtered degree 0 inverse, and

hence Φ restricts to an isomorphism of filtered cochain complexes C̃∂w,α(D1) ⊗ C̃∂w,α(D2) and
C̃∂w,α(D), and we are done.

To deduce Corollary 2.5 we first prove some results of independent interest that relate
unreduced cohomology to the reduced concordance homomorphisms.
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Proposition 2.11. Let D be a diagram of the knot K, let α be a root of ∂w, and let
gα ∈ C0

∂w(D) be the Gornik cocycle corresponding to α.
Then the filtration degree q of [gα] ∈ H0

∂w(D) satisfies

q � s∂w,α(K) + n− 1.

Proof. The degree q is the smallest filtration degree among elements of the coset gα +
d(C−1(D)) (where we write d for the differential in the Khovanov–Rozansky cochain complex).
But the reduced cohomology also has gα as a cocycle representative. From this it follows
that s∂w,α(K) + n− 1 is the smallest filtration degree among elements of the coset gα +
[∂w/(x− α)]d(C−1(D)). This latter coset is a subset of the former coset, from which the result
follows.

We can also compare the filtration on the entire unreduced cohomology with the collection
of n slice genus bounds corresponding to each root of ∂w. The next proposition implies in
particular that the bounds arising from unreduced cohomology and the unreduced bounds
differ by at most 1.

Proposition 2.12. Let K be a knot. We have H∂w(K) = qj1(K) + · · · + qjn(K) with
j1(K) � · · · � jn(K) as in Theorem 1.1. Sort the roots α1, . . . , αn of ∂w such that s̃∂w,α1

(K) � · · · � s̃∂w,αn
(K). Then we have

|ji(K) − 2(n− 1)s̃∂w,αi
(K)| � n− 1.

Proof. Multiplication by ∂w/(x− αi) gives a filtered map of degree 2n− 2

C∂w(D) −→ ∂w

x− αi
C∂w(D),

in other words a filtered map

C∂w(D) −→ C̃∂w,αi
(D)[1 − n].

Summing over i yields a filtered map

C∂w(D) −→
n⊕

i=1

C̃∂w,αi
(D)[1 − n].

This induces a bijective filtered map on cohomology (the inverse is not necessarily filtered, too)

H∂w(K) −→
n⊕

i=1

H̃∂w,αi
(K)[1 − n],

since it takes generating cocycles to generating cocycles. Hence we get for each i ∈ {1, . . . , n}:
ji(K) � 2(n− 1)s̃∂w,αi

(K) + 1 − n

or equivalently
2(n− 1)s̃∂w,αi

(K) − ji(K) � n− 1.

To complete the proof, one could now resort to taking the mirror image of D. But in fact, it
suffices to consider the inclusion map

∂w

x− αi
C∂w(D) −→ C∂w(D),

which is filtered, and sum over i to produce a bijective filtered map
n⊕

i=1

C̃∂w,αi
(D)[n− 1] −→ C∂w(D),
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which also gives a bijective filtered map on cohomology. Thus we have

2(n− 1)s̃∂w,αi
(K) + n− 1 � ji(K) =⇒ ji(K) − 2(n− 1)s̃∂w,αi

(K) � n− 1.

and the proof is complete.

Finally it is now a simple matter to deduce Corollary 2.5.

Proof of Corollary 2.5. The homomorphism s̃xn−1,α is independent of the choice of root α
since there exist linear maps of C which cyclically permute the roots. By Proposition 2.12,
it follows that 2(n− 1)s̃xn−1,α(K) is a value at distance at most n− 1 from each of
j1(K), . . . , jn(K). Since jn(K) − j1(K) = 2(n− 1), this determines s̃xn−1,α(K) completely and
we have

s̃xn−1,α(K) =
jn(K) − j1(K)

4(n− 1)
= sn(K).

2.2. Unreduced cohomology

In this subsection we consider the unreduced theory which is in a sense richer than the reduced
theory. We still obtain slice genus lower bounds, but in general we give up the property of
defining a concordance homomorphism, although we shall be able to define a concordance
quasi-homomorphism.

We fix a separable potential ∂w and recall the definition of the integers ji(K) from
Theorem 1.1 describing the filtration on H∂w(K). Now, since the complex associated to the
mirror image of a diagram is the dual complex, the invariants are still well behaved with respect
to the mirror image, that is to say:

Proposition 2.13. For all i ∈ {1, . . . , n} we have

ji(K) = −jn−i(K).

However, the filtration on the unreduced cohomology H∂w(K1#K2) is not in general
determined by those on H∂w(K1) and on H∂w(K2), see Question 4.7. Still, some bounds can
be given:

Proposition 2.14. For knots K1 and K2 we have

j1(K1) + j1(K2) + 1 − n � ji(K1#K2) � jn(K1) + jn(K2) − 1 + n

Proof. The 1-handle cobordism K1 	K2 → K1#K2 induces a surjection on unreduced
cohomology (this is part of the proof that unreduced cohomology gives slice genus lower bounds)
which is filtered of degree n− 1. Furthermore, we have the isomorphism as filtered vector spaces
H∂w(K1 	K2) = H∂w(K1) ⊗H∂w(K2).

Hence we have ji(K1#K2) + 1 − n � jn(K1#K2) + 1 − n � jn(K1) + jn(K2).
The other inequality follows from the same argument applied to the mirrors of K1 and K2.

Such boundedness results suggest that one should at least be able to extract from unreduced
cohomology quasi-homomorphisms from the knot concordance group to the reals. For example,
one could make the definition

s∂w(K) :=
j1(K) + · · · + jn(K)

2n(n− 1)
.



NEW QUANTUM OBSTRUCTIONS TO SLICENESS 95

The absolute value of s∂w certainly gives a lower bound on the slice genus which is tight for
torus knots (since s∂w is the average of n functions with these properties), and furthermore
one has

Proposition 2.15. The function s∂w is a quasi-homomorphism.

Proof.

|s∂w(K1#K2) − s∂w(K1) − s∂w(K2)|

=

∣∣∣∣∣ 1
2n(n− 1)

n∑
i=1

(ji(K1#K2) − ji(K1) − ji(K2))

∣∣∣∣∣
� 1

2n(n− 1)

(
3n(n− 1) +

∑
α:

∂w(α)=0

2(n− 1)|s̃α(K1#K2) − s̃α(K1) − s̃α(K2)|
)

=
3
2

directly from Proposition 2.12.

We now give a definition which will enable us to be briefer in the sequel.

Definition 2.16. We put a partial order on Laurent polynomials in q with non-negative
integer coefficients by writing F1(q) � F2(q) if and only if F1(q) − F2(q) is expressible as a sum
of polynomials

F1(q) − F2(q) =
∑

i

qui − qvi

where ui � vi for all i.

Lemma 2.17. Let ∂w be a separable potential, K a knot, and P a positive knot. Then we
have

GrjHi
∂w(K#P ) = GrjHi

∂w(K)[2(n− 1)sn(P )],

where the square brackets denote a shift in the quantum grading. In other words, taking connect
sum with a positive knot P has the effect of an overall shift equal to the genus of P .

Proof. Writing

FL(q) =
∑

j

dim(GrjH0
∂w(L))qj

for the Poincaré polynomial of a knot L, we will be done if we can show that

FK#P (q) = q2(n−1)sn(P )FK(q).

First note that since P is positive we have that sn(P ) is non-positive and furthermore −sn(P )
is equal to the slice genus of P . Hence there is a genus −sn(P ) cobordism from K to K#P ,
and we can conclude from Theorem 1.1 that

FK#P (q) � q2(n−1)sn(P )FK(q).

To establish the reverse inequality, let DK , DP , and DK#P be a diagram for K, a positive
diagram for P , and the diagram of K#P formed by a 1-handle addition between DK and DP ,
respectively.
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Now consider the cochain complex Ci
∂w(DP ). The cochain complex is supported in non-

negative homological degrees, and the cohomology of the cochain complex is supported in
degree 0. It follows that if g ∈ C0

∂w(DP ) is a cocycle, then the filtration grading of [g] ∈
H0

∂w(DP ) agrees with the filtration grading of g.
Let U+ be a positive diagram of the unknot whose oriented resolution O(U+) has the same

number of components as O(DP ). We know that we have a filtered isomorphism of C[x]/∂w(x)-
modules:

H0
∂w(U+) ≡ (C[x]/∂w(x))[1 − n].

The argument above tells us that we can identify the cohomology of DP with that of U+ up
to an overall shift, hence we have

H0
∂w(DP ) ≡ (C[x]/∂w(x))[(n− 1)(|O(DP )| − w(DP ) − 1)]

≡ (C[x]/∂w(x))[1 − n+ 2(n− 1)sn(P )]

where we write |O(DP )| for the number of components of O(DP ).
Under this identification, each generator [gDP

i ] ∈ H0
∂w(DP ) corresponds to a non-zero

multiple of an αi-eigenvector of the action of x, in other words, to a non-zero multiple of
the element

∂w(x)
x− αi

∈ C[x]/∂w(x)[1 − n+ 2(n− 1)sn(P )].

Now note that we have

1 =
∑

i

1∏
j �=i(αi − αj)

∂w(x)
x− αi

∈ C[x]/∂w(x)[1 − n+ 2(n− 1)sn(P )],

so that we see that there is a cocycle h ∈ C0(DP ) such that the filtration grading of [h] ∈
H0

∂w(DP ) agrees with that of h and is 1 − n+ 2(n− 1)sn(P ). Furthermore, note that h is a
linear combination of the generators gDP

i with each coefficient non-zero.
There is a map

Φ : H0
∂w(K) ⊗H0

∂w(P ) −→ H0
∂w(K#P )

induced by the 1-handle addition Morse move from DK 	DP to DK#P . This map is filtered of
degree n− 1. If 0 �= k ∈ H0

∂w(K), then we have that 0 �= Φ(k ⊗ [h]) ∈ H0
∂w(K#P ), since there

exists a cocycle representative for k expressible as a linear combination of the generators gDK
i

and h is a linear combination of the generators gDP
i with each coefficient non-zero.

Writing gr for the filtration grading, we see that

gr(Φ(k ⊗ [h])) � gr(k) + gr([h]) + n− 1 = gr(k) + 2(n− 1)sn(P ),

and this completes the proof.

Along with the usual mirror argument establishing the corresponding result for connect sum
with negative knots, this is enough to deduce that ji(K) share many properties of slice-torus
invariants. Some of these properties are described in [19]. The arguments there are specific
to the situation of Khovanov cohomology, but there are topological proofs due to unpublished
work by Kawamura and [16] by the first author.

We summarize the structure of the topological arguments and how they apply in the situation
of a separable potential ∂w. Given a diagram D, one constructs cobordisms to positive and
negative diagrams D+ and D−, respectively. By Theorem 1.1, one establishes lower bounds
on ji(D) from the first cobordism and upper bounds on ji(D) from the second. If one can
make good choices for D, D+ and D−, then one can make the upper and lower bounds agree,
determining each ji(D) completely.
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In such a good situation, because the cohomologies H∂w(D+) and H∂w(D−) are just shifted
copies of the cohomologies of the unknot, it follows that H∂w(D) is also a shifted version of
the unknot. Note that nowhere in this process have we relied on the particular choice of ∂w.
Hence we have an isomorphism as filtered vector spaces H∂w(D) ≡ Hxn−1(D). Furthermore,
in such a good situation, the same argument applies in the reduced case so that s̃∂w,α = sn for
any choice of root α.

Moreover, one can take the obvious cobordisms between diagrams D′#D and D′#D+ and
between D′#D and D′#D−. In the case of a good situation as above, it follows from the
resulting inequalities that H∂w(D′#D) is a shift of H∂w(D′) by 2(n− 1)sn(D).

We give some known classes of knots which have such a good situation:

Theorem 2.18. If ∂w is separable and α is a root of ∂w, K is a quasi-positive, quasi-
negative, or homogeneous knot (included in these categories are positive, negative, and
alternating knots, but not all quasi-alternating knots) and K ′ is a knot, then we have that

(i) s̃∂w,α(K) = sn(K),
(ii) H∂w(K) ≡ Hxn−1(K) as filtered vector spaces,
(iii) H∂w(K ′#K) ≡ H∂w(K ′)[2(n− 1)sn(K)].

There is an observation exploited by Livingstone [17] that says if K+ and K− are knots
related by a crossing change, then there is a genus 1 cobordism between K+ and K−#T2,3

where we write T2,3 for the positive trefoil (this is specific example of the general observation
that two intersection points of opposite sign in a connected knot cobordism can be exchanged
for a single piece of genus). The resulting inequality gives immediately

Proposition 2.19. If K+ and K− are knots with diagrams that are related by a crossing
change, then

0 � ji(K−) − ji(K+) � 2(n− 1).

2.3. Appetizing example revisited

We return to our example of Section 1.2, the pretzel knot P = 10125, and reanalyze its
cohomology in light of what we now know. We start with an easy proposition in which we
do not require that our potential ∂w is separable.

Definition 2.20. A page Ei (where i � 1) of a spectral sequence E is called significant if it
is not isomorphic to Ei−1 as a doubly graded vector space. Otherwise, it is called insignificant.

Proposition 2.21. Let ∂w =
∑

i aix
i ∈ C[x] be a potential of degree n > 0, and K a

knot. Suppose that ∃m � 1 : i �≡ n (mod m) =⇒ ai = 0. Then there is a Z/2mZ-grading on
the cohomology H∂w(K) which is respected by the spectral sequence. In particular, all pages
Ei of the spectral sequence arising from the filtered homotopy class of complexes corresponding
to K and the potential ∂w with i �≡ 1 (mod m) are insignificant.

Proof. If D is a diagram of K, note that the differential of C∂w(D) preserves the filtration
degree modulo 2m, thus giving a Z/2mZ-grading on the cohomology. Splitting the complex
along this cyclic grading, we see that the differentials of the spectral sequence must also respect
the grading. The differential on the ith page has q-degree 2i, and thus is 0 if m does not
divide i.
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We can use the cyclic grading on the cohomology to deduce consequences that are manifested
in the example of the knot P and the spectral sequences that we analyzed in Section 1.2. For
example:

Theorem 2.22. The concordance homomorphism s̃xn−x,0 factors through the integers.

Observe that if sn(K) is not an integer, then we therefore have sn(K) �= s̃xn−x,0(K).
We note that this proposition implies the existence of two distinct spectral sequences from
H̃xn(K) abutting to 1-dimensional E∞ pages supported in cohomological degree 0, specifically
one way these spectral sequences differ is in the quantum grading of the support of their
E∞ pages.

In fact in this situation the unreduced cohomology must also change with the potential.

Proposition 2.23. Suppose K is such that

sn(K) ∈ 1
n− 1

Z \ Z.

Then as a filtered vector space we have

Hxn−x(K) �≡ Hxn−1(K).

Proof of Theorem 2.22 and Proposition 2.23. First observe that the potential xn − x is of
the form considered in Proposition 2.21, so that the cohomology is Z/2(n− 1)Z-graded.

The roots of the potential are 0, ξ0, ξ1, ξ2, . . . , ξn−2, where ξ = e2πi/(n−1). If we are given
a diagram D, then corresponding to these roots are the Gornik cocycles which generate the
cohomology—we shall write these as g, g0, g1, . . . , gn−2.

Each Gornik generator is an element of the cochain group summand S corresponding the
oriented resolution of D. If the oriented resolution of D has c components, then, ignoring the
overall quantum shift, the corresponding cochain group summand is the vector space

S =
C[x1]
xn

1 − x1
⊗ · · · ⊗ C[xc]

xn
c − xc

.

The generators gi are given by

gi =
(xn

1 − x1) · · · (xn
c − xc)

(x1 − ξi) · · · (xc − ξi)
.

We claim that the vector space G = 〈g0, . . . , gn−2〉 has a basis h0, h1, . . . , hn−2, where hi is a
homogeneous polynomial of degree 2i with respect to the cyclic grading Z/2(n− 1)Z inherited
from the usual Z-grading on C[x1, . . . , xc]. The proof is a straightforward check and an explicit
argument is given mutatis mutandis in Lemma 2.4 of [20].

Putting back in the overall quantum shift, it follows that the associated Z/2(n− 1)Z-graded
vector space to the 1-codimensional subspace

〈[g0], . . . , [gn−2]〉 ⊂ Hxn−x(D)

is 1-dimensional in each even grading if n is odd and in each odd grading if n is even.
Furthermore, using Corollary 3.4 we see that sxn−x,ξi is independent of choice of i. This implies
via Proposition 2.12 that the associated graded vector space to the 1-codimensional subspace
above has Poincaré polynomial qr(1 + q2 + · · · + q2n−4) for some integer r.

The generator g is homogeneous of grading n− 1 with respect to the Z/2(n− 1)Z-grading
on the cochain complex. By the definition of s̃xn−x,0, it follows immediately that s̃xn−x,0 is
always integral.
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Moreover, since the cyclic grading n− 1 is 2-dimensional in unreduced cohomology, we see
that if the Poincaré polynomial of the associated graded vector space toHxn−x(K) is of the form
q2r(q1−n + q3−n + · · · + qn−1) for some integer r, then we must have that 2(n− 1) divides r.

On the other hand, the Poincaré polynomial of the associated graded vector space to
Hxn−1(K) is exactly q2(n−1)sn(K)(q1−n + q3−n + · · · + qn−1). Hence if sn(K) is not an integer,
then we must have

Hxn−x(K) �≡ Hxn−1(K).

3. Comparing different potentials

3.1. The KR-equivalence classes

Definition 3.1. We call two potentials ∂w and ∂w′ KR-equivalent over a link L, denoted
by ∂w ∼L ∂w′, if C∂w and C∂w′ are cochain homotopy equivalent over C. Furthermore, we call
those potentials KR-equivalent, denoted by ∂w ∼ ∂w′, if they are KR-equivalent over all links.

This section is devoted to investigating the space of KR-equivalence classes. In this paper we
restrict ourselves to the unreduced case, but the reduced case is also interesting. In particular,
note that unreduced cohomologies with KR-equivalent potentials are filtered isomorphic, but
the corresponding reduced cohomologies need not be.

Throughout this section, we will frequently use the following graded rings:

Rn = C[a0, . . . , an−1], deg ai = 2(n− i),
Rn[x], deg x = 2,

Rn[x]/p, p = xn + an−1x
n−1 + · · · + a0.

Theorem 3.2 ([11], cf. also [28]). There is an equivariant sln-cohomology theory as
follows: to a marked diagram D of a link L, a finite-dimensional graded cochain complex
CU(n)(D) of free Rn[x]/p-modules is associated, such that complexes of equivalent marked
diagrams are homotopy equivalent over Rn[x]/p. We will denote its cohomology by HU(n)(L).
Evaluating by e : Rn → C gives a filtered cochain complex of free C[x]/∂w-modules with
∂w = xn + e(an−1)xn−1 + · · · + e(a0), that is, the usual sln-complex with potential ∂w.

Equivariant cohomology is in a sense a universal sln-homology, from which the reduced and
unreduced cohomologies and spectral sequences for all potentials of degree n can be recovered.

Proposition 3.3. Suppose that D is knot diagram, ∂w1 is a degree n potential, and that
we define another degree n potential ∂w2 by

∂w2(x) =
1
an
∂w1(ax+ b),

where a, b ∈ C with a �= 0. Then:

(i) There is a filtered cochain homotopy equivalence ϕ : C∂w1(D) → C∂w2(D).
(ii) ϕ(x · c) = (ax+ b) · ϕ(c).

Proof. The first part is due to Wu [27, Proposition 1.4]. The second part follows
immediately from the construction of ϕ.

This implies that every potential is KR-equivalent to a potential whose xn−1-coefficient is
zero. Another corollary is the following:
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Corollary 3.4. Let α1, . . . , αn be the roots of ∂w1. Then

s̃∂w1(x),αi
(K) = s̃∂w2,a−1(αi−b)(K).

So far, particular attention has been focused on potentials of the following kind:

Definition 3.5. We call ∂w a Gornik potential if for some β, γ ∈ C with γ �= 0 we have

∂w = (x− β)n − γ.

From the previous proposition, we get:

Corollary 3.6. Suppose that K is a knot, ∂w is a Gornik potential and α is any root of
∂w, then we have

(i) H∂w(K) ≡ Hxn−1(K) as a filtered vector space,
(ii) s̃∂w,α(K) = sn(K).

Let us give a geometric interpretation of the situation for separable potentials: a separable
potential can be given by its set of roots in the complex plane. If two such sets are related
by an affine symmetry of the plane, then their corresponding potentials are KR-equivalent. In
particular, there is only one KR-equivalence class of potentials of degree 2, as was first proved
in [21]—all potentials of degree 2 are Gornik. For higher degrees, however, the situation is
more complicated. For the main result of this section, identify the set of polynomials of degree
n with Cn and endow it with the Zariski topology.

Theorem 3.7. For a fixed link L and a fixed n, there are only finitely many KR-equivalence
classes of polynomials of degree n over L. One of these classes is generic in the sense that all
other classes are finite unions of intersections of an Zariski-open set with a Zariski-closed set
that is not Cn.

Corollary 3.8. Let n � 1 be fixed. There are at most countably many classes of KR-
equivalence. One of these classes is generic in the sense that it contains a countable intersection
of non-empty Zarisiki-open (and thus dense) sets.

This notion of genericity is strong enough, for example, to imply that the complement of the
generic class has measure zero. At the moment, it is not clear whether for a fixed n, there is
in fact an infinity of KR-equivalence classes; in the next Section 3.2 we will see that there are
at least n− 1.

In the proof, we use the strategy of successive Gauss elimination as described in [8] to
compute the spectral sequence. Let us briefly explain this strategy: our additive category
of choice is finite-dimensional filtered vector spaces over a field. Gauss elimination may be
used to dispose of all isomorphisms of a cochain complex C0, yielding a homotopy equivalent
cochain complex C ′

0 whose differentials on the 0th page of cohomology are trivial, that is,
E0(C ′

0) = E1(C ′
0). So, it is possible to define a filtered complex C1 as regrading of C ′

0 by shifting
the filtration degree of the tth cohomology group down by t. We have Ek(C1) = Ek+1(C ′

0). Now
repeat this procedure—let C ′

1 be homotopy equivalent to C1 with trivial differentials on the
first page, C2 its regrading etc. At some point C� will have trivial differentials, and at that
point all the pages of the spectral sequence have been computed.

On the one hand, this gives a practical algorithm to compute a spectral sequence; indeed
it is this algorithm that we use in our program khoca, see Section 5.2. On the other hand, it
establishes that doing so determines the filtered homotopy type (Figure 3):
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Figure 3 (colour online). A tree illustrating the KR-equivalence classes of the trefoil for n = 3.
Polynomials in rectangular boxes are those on whose vanishing the class depends, as in the proof
of Theorem 3.7; Δ denotes the discriminant. The round boxes mark representative potentials of
the corresponding KR-equivalence class. Separable potentials are in yellow boxes. The generic
class is at the bottom.

Proposition 3.9. Two finite-dimensional filtered cochain complexes over a field with
respective spectral sequences E and E′ are homotopy equivalent if and only if Ei and E′

i

are isomorphic doubly graded vector spaces for all i � 1.

Proof of Theorem 3.7. Forgetting x, the equivariant sln-cochain complex CU(n) is a complex
of free graded Rn-modules of finite rank, where the ai carry a non-negative degree. That is in
fact all the information we need on CU(n); consider any cochain complex C with these properties
and a subset U ⊂ Cn. Then U is divided into equivalence classes of vectors (v0, . . . , vn−1), on
which evaluating by ai �→ vi induces homotopy equivalent filtered cochain complexes. Let us
prove for all pairs (C,U) that U decomposes as disjoint union of finitely many setsDi, such that
each equivalence class is the union of some of those sets, and such that for each Di, one may
select two sets Ti, T

′
i ⊂ Rn such that Di = U ∩ Z(Ti) ∩ Z(T ′

i )
c, where Z(T ) =

⋂
p∈T p

−1(0).
Moreover, for at most one i we have Z(Ti) = Cn. This implies the statement of the Theorem 3.7.

We proceed by induction. The statement is obviously true for a complex with trivial
differentials. Otherwise, assume that the statement holds for all pairs (C ′, U ′) such that either
C ′ has smaller total dimension than C; or has equal total dimension, but fewer non-zero matrix
entries. If all degree-preserving differentials of C are zero, regrade following the description of
successive Gauss elimination above. Then pick a non-zero degree-preserving matrix entry p of
C and consider (C,U ∩ p−1(0)). Without changing the equivalence classes, p may be replaced
by zero, so by the induction hypothesis U ∩ p−1(0) =

⊔k
i=1Di, where

Di = U ∩ p−1(0) ∩ Z(Ti) ∩ Z(T ′
i )

c = U ∩ Z(Ti ∪ {p}) ∩ Z(T ′
i )

c.

On the other hand, consider (C,U ∩ (p−1(0))c). The polynomial p does not vanish for any
evaluation; so let us perform a Gauss elimination on p, and multiply the matrix with p
afterwards. The ensuing complex C ′ has the same equivalence classes as C, because its
evaluation at any point in U ∩ (p−1(0))c is homotopy equivalent to C. Moreover, C ′ has smaller
total dimension, so by the induction hypothesis, U ∩ (p−1(0))c =

⊔�
j=1 D̃j , where

D̃j = U ∩ (p−1(0))c ∩ Z(T̃j) ∩ Z(T̃ ′
j)

c = U ∩ Z(T̃j) ∩ Z(T̃ ′
j ∪ {p})c.

Note that Z(Ti ∪ {p}) is a proper subset of Cn for all i, and at most one of the Z(T̃j ∪ {p}) is
not. So

U =
⊔
i

Di 	
⊔
j

D̃j
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Figure 4 (colour online). A tree as in Figure 3 for the trefoil and n = 4. For simplicity, we
have set a3 = 0 from the beginning; note that every polynomial is KR-equivalent to another with
a3 = 0 by Proposition 3.3.

is the decomposition of U whose existence was to be proven (Figure 4).

3.2. A lower bound on the number of KR-equivalence classes

Theorem 3.10. (i) There are at least n− 1 KR-equivalence classes of separable potentials
of degree n.

(ii) Gornik potentials form an equivalence class, and for n > 2, it is not generic.

We will prove this theorem by analyzing the equivariant sln-cohomology of the trefoil.
It is a good exercise to compute it for general n using Theorem 5.5; but let us follow
a different route here, which treats the cohomology theories more as a black box. The
proof is split in several lemmas, and uses the following theorem, which was proved quite
recently:

Theorem 3.11 ([25]). Let ∂w be a potential with distinct roots α1, . . . , αk. For every link
L, there is an isomorphism respecting the homological degree (but not the quantum degree)

H∂w(L) ≡
k⊕

i=1

H
x(multαi

∂w)(L).

Here we are writing multαf to mean the multiplicity of the root α in the complex
polynomial f .

Lemma 3.12. Let ∂w be a potential with distinct roots α1, . . . , αk and let d ∈ C[x]. Denote
the C-endomorphism of C[x]/∂w given by multiplication with d by Md. Then

dimC kerMd =
k∑

i=1

min{multαi
∂w,multαi

d}.
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Proof. This follows from the decomposition as a C[x]-module

C[x]/∂w =
k⊕

i=1

C[x]/(x− αi)multαi
∂w.

Lemma 3.13. Let

q = xn−1 +
n−2∑
i=0

bix
i ∈ Rn[x], bi ∈ Rn

be homogeneous of degree 2n− 2 with the following property: for all e : Rn → C, let α1, . . . , αk

be the roots of e∗(p), then

n− k =
k∑

i=1

min{multαi
e∗(p),multαi

e∗(q)}. (†)

Then the coefficient of ai+1 as monomial in bi is not equal to 1.

Proof. Let r ∈ {1, . . . , n− 1}. Assume that the statement were not true for br−1. This
implies, in particular, that for e : Rn → C given by e∗(p) = xn + xr = xr(xn−r + 1), we have
e(br−1) = 1. We will show that this leads to a contradiction.

The polynomial e∗(p) has k = n− r + 1 different roots, and so the left-hand side of (†) equals
r − 1. Every root but 0 has multiplicity 1 and thus contributes at most 1 to the sum on the right-
hand side. So, the right-hand side is less or equal than n− r + min{mult0e∗(p),mult0e∗(q)},
and thus

r − 1 � n− r + min{n− r,mult0e∗(q)}
=⇒ 2r − n− 1 � min{n− r,mult0e∗(q)}
=⇒ 2r − n− 1 � mult0e∗(q).

Hence we have e(bi) = 0 for all i � 2r − n− 2. For degree reasons,

e(bi) �= 0 =⇒ deg ar|deg bi
=⇒ (2n− 2r)|(2n− 2i− 2).

So, if 2r − n− 1 < 0, then br−1 is the only bi with non-zero evaluation, and we have e∗(q) =
xr−1(xn−r + 1), contradicting (†).

If, on the other hand, 2r − n− 1 � 0, then e(b2r−n−1) �= 0 is possible. In that case

e∗(q) = xn−1 + xr−1 + e(b2r−n−1)x2r−n−1

= x2r−n−1(x2n−2r + xn−r + e(b2r−n−1)).

We have mult0e∗(q) = 2r − n− 1, which in turn implies that all other roots of e∗(q) must
be common roots with e∗(p). Hence xn−r + 1 divides x2n−2r + xn−r + e(b2r−n−1), which
contradicts e(b2r−n−1) �= 0.

Remark 3.14. One may be tempted to think that the hypotheses of the previous lemma
are in fact sufficient to show that

q =
1
n
· ∂p
∂x
.

But this is not true, and indeed for n = 3 we have the following counterexample:

q =
x3 + 2a2x

2 + (4a1 − a2
2)

3
.
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Lemma 3.15. Let ∂w = xn + an−2x
n−2 + · · · + a0 ∈ C[x] with ∂w �= xn, and let E be the

spectral sequence associated to C∂w(K). Let � be the smallest positive number such that
an−� �= 0 (that is, 2 � � � n).

(i) The pages E2, . . . , E� are insignificant.
(ii) For K = T2,3, the page E1+� is significant.

Proof. For any knot K with a diagram D, CU(n)(D) is by Gauss elimination homotopy
equivalent to a complex of free modules whose differentials have matrices all of whose entries
are non-units in Rn[x]/p. We shall assume that we have performed such a Gauss elimination
and we shall abuse notation and write the new complex as CU(n)(K).

Forgetting the action of x gives a chain complex CU(n)(D) of free Rn-modules. One may
continue Gaussian elimination as long as possible, arriving at a complex CU(n)(K). Evaluating
this chain complex by some e : Rn → C gives a chain complex homotopy equivalent to Ce∗(p).
All non-vanishing matrix entries in CU(n)(K) are homogeneous non-constant polynomials in
Rn; so the degree of such an entry is at least 2�. This implies part (i).

To obtain reduced sln-cohomology from CU(n)(K), one may evaluate by the map that sends
all ai and x to 0. So, CU(n)(K) has the same Poincaré polynomial as H̃xn(K). The reduced
Homflypt cohomology of the trefoil has Poincaré polynomial

a2q−2 + t2a2q2 + t3a4.

This can be easily computed from the Homflypt polynomial and the signature, since the trefoil
is a two-bridge knot and thus KR-thin. That also implies that Rasmussen’s spectral sequences
are all trivial, and hence the reduced sln-cohomology is obtained from the Homflypt cohomology
simply by the regrading a �→ qn. It has therefore Poincaré polynomial

q2n−2 + t2q2n+2 + t3q4n.

Next, the differential between homological degree 2 and 3 is given by multiplication with a
polynomial d ∈ Rn[x] which is homogeneous of degree 2n− 2. Using Theorem 5.5, one could
compute by hand that d = ∂p/∂x. Instead, we proceed as follows: let e : Rn → C send all ai

to 0. Applying e to CU(n)(K) and forgetting the action of x will give give unreduced sln-
cohomology. If e(d) were 0, then we would have Hxn(K) = Hxn(U) ⊗ H̃xn(K), where U is
the unknot. But this is impossible since there is a spectral sequence induced by Cxn−1(K)
from Hxn(K) which respects the quantum degree modulo 2n and whose limit is supported in
cohomological degree 0. Therefore e(d) �= 0, and hence e(d) is a non-zero scalar multiple of
xn−1. This gives dimC H

2
xn(K) = n− 1, and so Theorem 3.11 implies that for all e : Rn → C,

where e∗(p) has distinct roots α1, . . . , αk, we have

dimC H
2
e∗(p)(K) = n− k.

On the other hand, Lemma 3.12 implies that

dimC H
2
e∗(p)(K) =

k∑
i=1

min{multαi
∂w,multαi

d}.

So, the hypotheses of Lemma 3.13 are satisfied by d.
Now let us examine what happens when we pass to unreduced cohomology: this simply means

forgetting the action of x, thus obtaining a cochain complex of vector spaces. With respect to
the basis (1, x, . . . , xn−1) of C[x]/∂w, the differential between homological degree 2 and 3 is
an n× n-matrix M , whose (i, j)-th entry is the coefficient of xi−1 of the unique polynomial of
degree at most n− 1 that equals xj−1 · d in C[x]/∂w. So, the first two columns of M can be
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Table 3. Number of KR-equivalence classes of separable potentials for the trefoil and a more
complicated knot; for the former, classes can be determined precisely by continuing the calculation
done in the proof of Lemma 3.15. For the latter, we calculated cohomologies with respect to a
large batch of potentials with small coefficients.

# KR-equivalence classes of separable potentials. . .

deg ∂w . . . of the trefoil . . . of P (5,−3, 2)#2

2 1 1
3 2 � 3
4 4 � 6
5 8 � 10

n (n − 1)! � . . . � n − 1 � n − 1

computed as (recall that w.l.o.g. we set an−1 = 0)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 −a0

b1 b0 − a1

...
... · · ·

bn−3 bn−4 − an−3

0 bn−3 − an−2

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Applying Gauss elimination to the entry n at (n, 1) gives an (n− 1) × (n− 1) matrix whose
first column is ⎛⎜⎜⎜⎜⎜⎜⎝

−a0

b0 − a1

... · · ·
bn−4 − an−3

bn−3 − an−2

⎞⎟⎟⎟⎟⎟⎟⎠
We have already argued that all pages E2, . . . , E� of the spectral sequence are insignificant for
degree reasons. Now because of Lemma 3.13, the differential on E� is non-trivial, and so E1+�

is significant.

Proof of Theorem 3.10. For (i), one can take, for example, xn + 1 and xn + xi + a0 for
i ∈ {1, . . . , n− 2} and some a0 ∈ C such that the polynomial is separable. By Lemma 3.15, the
cohomology of the trefoil associated to these potentials have spectral sequences with different
significant pages, and are thus pairwise not KR-equivalent.

The second part (ii) follows from the fact that every potential is by Proposition 3.3 KR-
equivalent to one with an−1 = 0. To be KR-equivalent to a Gornik potential, the next significant
page of the spectral sequence needs to be the (n+ 1)-st, and this can only be the case if ai = 0
for all i > 0.

Remark 3.16. We picked the trefoil for ease of calculation, and to demonstrate that even
over the simplest non-trivial knot there are at least n− 1 different KR-equivalence classes. In
fact, the numbers in Table 3 and a close look at the calculations suggest that the actual number
of classes might rather be 2n−2.

Note that there are non-KR-equivalent potentials that are KR-equivalent over the trefoil:
for example, x3 − x ∼T3,2 x

3 − x− 1, but x3 − x �∼P (5,−3−2) x
3 − x− 1. Hence the differentials

of CU(n)(P (5,−3,−2)) are not all equal to ∂w′. It would certainly be worthwhile to analyze
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which forms CU(n) takes in general, or for certain classes of knots: for example, it could be the
case that the equivariant cohomology of two-bridge knots decomposes as sum of C[x]/∂w (in
cohomological degree 0) and several summands of the form

C[x]/∂w ∂w′
−−→ C[x]/∂w.

Also, all separable potentials yield the same E∞ page for the trefoil; but it seems a reasonable
conjecture that there are knots (sufficiently complicated and certainly not positive) for which
the different KR-equivalence classes actually yield different E∞-pages.

4. Further illuminating examples

We have already seen through the example of Section 1.2 that the behavior of Khovanov–
Rozansky with a separable potential can be quite unexpected, especially if one’s intuition
comes from Lee homology and Rasmussen’s invariant. However, the structural results that
we have proven in Section 2 constrain this behavior to some extent. There are some natural
questions concerned with how unruly the invariants can be, and whether one might expect to
be able to give much stronger constraints than we have hitherto done.

In this Section 4 we list some of these natural questions and indicate through (computational)
examples where the answer lies.

Question 4.1. Are there knots whose sliceness is not obstructed by any of the reduced
concordance homomorphisms, but is obstructed by some of the unreduced concordance
invariants?

Let K = P (9,−7, 6)#P (−7, 5,−4). Then for all n � 2, we have sn(K) = 0 [16], so none of
the generalized Rasmussen concordance homomorphisms obstruct the sliceness of K. Neither
do any of the reduced concordance homomorphisms we checked. However, khoca calculates the
Poincaré-polynomial of Hx3−x(K) as 2 + q2, which shows that K is not slice.

Question 4.2. In Corollary 3.6, we have shown that all roots α of a Gornik potential
∂w give the same reduced concordance homomorphism s̃∂w,α. More generally, the symmetry
of potentials such as x3 − x, which is projectively invariant under x �→ −x, extends to
their reduced concordance homomorphisms: we have s̃x3−x,1 = s̃x3−x,−1 by Corollary 3.4.
Is it actually true for every potential that all roots give the same reduced concordance
homomorphism?

No, for example, we have that s̃x5−x,0(P (5,−3, 2)) = 0, but s̃x5−x,α(P (5,−3, 2)) = −1/4 for
α ∈ {±1,±i}, as can be computed with khoca.

Question 4.3. We have seen that unreduced cohomology does not always have a Poincaré
polynomial of the form q2(n−1)s · [n] with s ∈ Z. What shapes does it take? For example, are
the generators always in quantum degrees close to each other?

For Ki = P (5,−3, 2)#i, we have for all i � 0 : s̃x5−x,0(Ki) = 0, but s̃x5−x,α(Ki) = −i/4: as
i grows, so does the distance between the reduced concordance homomorphism of the root
0, and the other four. Since the distance between the s̃ and the unreduced ji is bounded
above by Proposition 2.12, the shape of unreduced (x5 − x)-cohomology of Ki is increasingly
elongated with growing i. And indeed, khoca calculations for i = 1, 2, 3, 4 suggest that its
Poincaré polynomial is q−4 + q−1−2i · [4] for all i � 1.
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Question 4.4. Proposition 2.15 shows how to get a quasi-homomorphism from the
smooth concordance group to the rationals using unreduced cohomology. For Hxn−1, this is a
homomorphism. Is there any way to define a homomorphism for other potentials?

There may be, but if we take for example ∂w = x3 + x+ 1, then it cannot be done in an
obvious way, as the following proposition indicates:

Proposition 4.5. Let ji(K) be defined as in the introduction with potential x3 + x+ 1.
Suppose that ϕ is a function from the set {(x1, x2, x3) | x1 � x2 � x3} ⊂ (2Z)3 to R, such that
ϕ∗ : K �→ ϕ(j1(K), j2(K), j3(K)) is a concordance homomorphism. Then ϕ∗ takes all knots K
with H∂w(K) = q2(n−1)s · [n] to zero.

Proof. Let K = P (7,−5, 4)#2. By khoca calculations, we have

∀i ∈ {1, 2, 3} : ji(K) = ji(K#K) = −2.

Therefore, ϕ∗(K#K) = ϕ∗(K) =⇒ ϕ∗(K) = ϕ(−2,−2,−2) = 0. By taking the mirror image,
we get ϕ(2, 2, 2) = 0 as well. But we have ϕ∗(K#T−2,3) = ϕ(2, 2, 2) = 0 =⇒ ϕ∗(T−2,3) =
0 =⇒ ϕ(2, 4, 6) = 0. Therefore, ϕ∗ sends also any multiple of T−2,3 to zero, and we have
∀s ∈ Z : ϕ(2 + 4s, 4 + 4s, 6 + 6s) = 0.

This implies that if one can define such a homomorphism then it must be identically 0 on all
quasi-positive and homogeneous knots, which would be very unusual behavior indeed. In fact,
based on wider calculations of Hx3+x+1 which we do not report here, it seems very likely that
any such homomorphism defined as in the proposition will be identically 0.

Question 4.6. We have seen the effect on unreduced cohomology H∂w(K) of taking the
connected sum with homogeneous and quasi-positive knotsK ′ in Theorem 2.18: the cohomology
H∂w(K#K ′) is just a quantum shift of H∂w(K). But perhaps it is not the quasi-positivity or
homogeneity of K ′ that is important, but just the shape of the associated graded vector space
to its cohomology (which is that of a shifted unknot). Is the result more generally true for
knots K ′ with H∂w(K ′) = q2(n−1)s · [n], that is, does H∂w(K#K ′) = H∂w(K)[2(n− 1)s] hold?

As discussed in the answer to Question 4.3, we have

Hx5−x(P (5,−3, 2)#4) = q−4 + q−9 · [4] = q−8 · [5],

but, for example,

Hx5−x(P (5,−3, 2)#4#P (5,−3, 2)#4) = q−4 + q−17 · [4] �= q−16 · [5].

Question 4.7. Is H∂w(K#K ′) determined by H∂w(K) and H∂w(K ′)?

No — take K,K ′ ∈ {T (3, 2), P (5,−3, 2)#4} (see the previous Question).

Question 4.8. Is it possible that the reduced concordance homomorphisms arising from
degree 3 polynomials are all just linear combinations of s2 and s3? (We thank Mikhail Khovanov
for raising this question.)

No. We consider the reduced concordance invariant given by taking the root x = 0 of the
potential x3 − x. Then computing the invariants for the trefoil knot and the knot P (5,−3, 2)
one can deduce that if there is such a linear dependence it is of the form:

s̃x3−x,0 = 2s3 − s2.
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Next, consider the pretzel knot P (7,−5, 4). In [16] the first author showed that this knot
satisfies s2(P (7,−5, 4)) = 1 and sn(P (7,−5, 4)) = 0 for any n > 2. We can compute the
reduced sl(3) cohomology (using for example [15]) and see that in cohomological degree 0 the
cohomology is supported in quantum degree 0. Hence in particular s̃x3−x,0(P (7,−5, 4)) = 0.
This then shows that s̃x3−x,0 is not in the span of s2 and s3.

5. Computer calculations

5.1. Bipartite links

In this section, we consider oriented links with matched diagrams, that is to say, diagrams
obtained by gluing together copies of the basic 2-crossing tangle (and its mirror-image) as
shown in Figure 5a. Such links are called bipartite links. If the orientations of the tangles are
always as in Figure 5b (or its mirror image), we call the diagram orientedly matched and the
link orientedly bipartite.

Proposition 5.1. An unoriented matched link diagram D admits an orientation that
makes it orientedly matched. This orientation is unique up to overall reversals of orientations
of disjoint diagram components of D.

Proof. If D is a knot, then this is asserted without proof in [5]; and indeed, pick one of the
basic tangles: then the two strands in the complement of the tangle pair up its four endpoints.
A priori there are three different pairings possible; but pairing the upper two endpoints would
give a two-component link, and pairing each endpoint with the one diametrically opposed
would imply that the complement of the tangle has an odd number of crossings. So, the left
endpoints are paired, which implies that the tangle is oriented in the matched sense.

Assume now that D has more than one component and is not split. Then one can rotate
a subset S of the basic tangles constituting D by a quarter-turn, such that the result is a
knot diagram D′. Note that the set of orientations of D that maked D orientedly matched
are in 1–1 correspondence with the orientations of D′ that make D′ orientedly matched:
the correspondence is given by rotating each tangle in S by a quarter-turn and reversing
its orientation.

If D is split, then treat every component separately.

Matched diagrams were introduced in [23] in the context of the Homflypt polynomial. The
authors conjectured that there were non-bipartite knots, a problem which remained open for
24 years, until it was solved by Duzhin and Shkolnikov [5], who showed that if a higher
Alexander ideal of a bipartite knot contains the polynomial 1 + t, then this ideal must be
trivial. Thus various of 9- and 10-crossing knots are shown to be not bipartite, among them
the P (3, 3, 3)-pretzel knot. In fact, this generalizes to P (p, q, r)-pretzel knots with p, q, r odd
and λ = gcd(p, q, r) > 1, because their second Alexander ideal is generated by λ and 1 + t. If,
on the other hand, p is even, then the P (p, q, r)-pretzel knot is bipartite, as we shall prove
later on.

Our interest in bipartite links is motivated by Krasner’s discovery [10] that the Khovanov–
Rozansky cochain complexes of the basic oriented matched tangle (Figure 5b), and conse-
quently of orientedly matched diagrams take a particularly simple form: they are homotopy
equivalent to cochain complexes in the TQFT-subcategory — avoiding MOY-graphs and
foams. In Theorem 5.5, Krasner’s theorem is generalized to equivariant Khovanov–Rozansky
cohomologies.

This observation has allowed us to write a computer program called khoca that computes
Khovanov–Rozansky cohomologies of bipartite links. A description is given in the next section.
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Figure 5. The basic matched tangle, (a) unoriented and (b) oriented.

Figure 6 (colour online). The Montesinos-knot ( 1
5
, 2

3
,− 1

2
) (which is equivalent to M( 1

5
,− 1

3
, 1

2
),

the (5,−3, 2)-pretzel knot).

Duzhin and Shkolnikov prove that rational knots are bipartite; the following is a general-
ization, rendering precise a remark of Przytycki’s that ‘half of Montesinos knots should be
bipartite’. A Montesinos link is a generalization of pretzel links, where the strands are replaced
by rational tangles—see Figure 6 for an example. Rational tangles up to boundary-fixing
isotopy are in one-to-one correspondence with Q ∪ {∞} [3]. The rational tangle with twists
a1, . . . , an corresponds to the value of the continued fraction

[a1, . . . , ak] := ak +
1

ak−1 + 1
···+a1

.

So, a Montesinos link may be written as L = M(p1/q1, . . . , pn/qn), where pi ∈ Z, qi ∈
Z+, (pi, qi) = 1. In this notation, for example, M(3) is the trefoil and M(1/a, 1/b, 1/c) the
(a, b, c)-pretzel link. Clearly, without changing the isotopy type of L one may insert a 0 to or
remove it from the list of fractions; and

M(p1/q1, . . . , pn/qn) = M(∓1, p1/q1, . . . , pi/qi ± 1, . . . , pn/qn).
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Theorem 5.2. Consider the unoriented Montesinos link L = M(p1/q1, . . . , pn/qn). If L
has more than one component, then it is bipartite. If L is a knot and one of the denominators
qi is even, then L is bipartite.

Lemma 5.3 ([4, Lemma 2]). If either p or q is even, then p/q can be written as continued
fraction p/q = [a1, . . . , ak] with all ai even.

Proof of Theorem 5.2. Let A = {i | pi, qi odd}. The Montesinos link L is isotopic to

M(#A/1, p′1/q1, . . . , p
′
n/qn),

where p′i = pi − qi if i ∈ A an p′i = pi otherwise. If L has more than one component, and none
of the qi is even, it follows that #A is even. If, on the other hand, one of the qi is even, w.l.o.g.
q1, L′ is isotopic to

M((p1 + q1 · #A)/q1, p′2/q2, . . . , p
′
n/qn).

So if one of the hypotheses of the Theorem 5.2 is satisfied, then L is isotopic to a Montesinos
link who only contains rational tangles whose fractions have even numerator or denominator.
But by Lemma 5.3, the corresponding rational tangles correspond to a continued fraction
[a1, . . . , ak] with all ai even, and can thus clearly be glued from copies of the basic unoriented
matched tangle.

Lemma 5.4 ([11]). In the category of equivariant matrix factorizations the maps (i), (ii)
and (iii) are filtered isomorphisms.

(i)

where ci is given by the composition of the following maps:

(ii)

where di is given by the composition of the following maps:

(iii)

where si is given by the composition of the following maps:
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Theorem 5.5. The following filtered cochain complexes are homotopy equivalent:

Proof. We will compose a series of cochain homotopy equivalences to connect the two terms.
By definition,

Here and later, a star (∗) indicates a map that we do not need to know. To start, replace
the circle in cohomological degree 0 and the first digon in cohomological degree 1 using the
respective MOY-decompositions. This leads to d1 being replaced by an (n− 1) × n-matrix
d2. For 0 � i � n− 1 and 0 � j � n− 2, its (i+ 1, j + 1)-entry is a map from q3−3n+2j to
q3−3n+2i given by the following composition (dotted line):

We have χ1d1 = (x3 − x2), and thus the whole map equals εxn−2−i+j
1 (x3 − x1)ι. This is

clearly equal to a multiple of the identity of if i = j. On the other hand, if i < j, then
this map is zero. Thus d2 is an upper triangular matrix whose main diagonal consists of
isomorphisms. Therefore the submatrix obtained by deleting the last column is invertible. So
using Gauss elimination, the cochain complex is homotopy equivalent to

To proceed, use MOY decompositions again, to replace the remaining digon and the square.
For the digon, we will use the dual of the map given in Lemma 5.4 (ii). In this way, e1 is
replaced by a (n− 1) × (n− 1)-matrix e2. Let us ignore the last row and last column, and
denote by e′2 the corresponding submatrix. For i, j ∈ {0, . . . n− 2}, its (i+ 1, j + 1)-entry is a
map from q3−3n+2j to q3−3n+2i , given by the following composition (dotted line):
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Because χ1χ
′
1e1χ0 = (x3 − x2)(x2 − x4), the whole map equals εxn−3−i+j

1 (x3 − x1)(x1 −
x4)ι. As before, this is a non-zero multiple of the identity for i = j, and vanishes for i < j. Hence
e′2 is an invertible submatrix of e2. By Gauss elimination, our cochain complex is homotopy
equivalent to

To determine the maps, note that the Hom-space is one-dimensional in the q-degree
in question. Thus e3 is a multiple of the saddle. Now, close off the original tangle to the unknot.
The cohomology of the unknot has support in cohomological degree 0; but if e3 were 0, the
above complex would have cohomology in cohomological degree 2 after closing off. Hence e3 is
a non-zero multiple of the saddle.

The Hom-space of the q-degree in question is two-dimensional, but only the subspace
generated by (x1 − x2) yields 0 when composed with the saddle. Closing off as before, we see
that the dimension of the first cochain group is strictly greater than the dimension of the
second. So, for the first cohomology group to vanish, d3 needs to be non-zero. Thus d3 is a
non-zero multiple of (x1 − x2).

A final isomorphism of cochain complexes may be used to do away with the non-zero factors.

Remark 5.6. To our knowledge, there is no integral Khovanov-Rozansky cohomology
theory yet that is defined for arbitrary tangles (not just pieces of braids as in [12]). But if
such a theory can be defined based on the Khovanov–Rozansky cube of singular resolutions, it
is likely to satisfy Theorem 5.5.

In particular, Theorem 5.5 gives a complex associated to a matched diagram that is defined
over the integers. Hence one can compute a cohomology theory H over the integers for matched
diagrams and thus make conjectural computations of the as-yet-undefined integral Khovanov–
Rozansky cohomology.

5.2. A computer program

Although there is a variety of computer programs doing computations in Khovanov–Rozansky
cohomologies, none of them can quickly calculate sln-cohomologies for small n of small
knots. One reason is the difficulty of implementing the calculus of MOY-graphs and matrix
factorisations (or some other formalism describing the differentials) on the tangle level, which
is necessary for Bar–Natan’s divide-and-conquer algorithm [2]. Theorem 5.5 shows that to
compute the cohomology of bipartite knots, a computer program only needs to do calculations
in the TQFT category of tangles and cobordisms. This category is much easier for a computer
program. While not all knots are bipartite, and regrettably most torus knots appear not to be,
there are still enough bipartite knots which are not two-bridge and have interesting Khovanov–
Rozansky cohomologies, notably the odd-odd-even pretzel knots, which are our main source of
examples.

Our program khoca calculates unreduced and reduced sln-cohomology (including all pages of
the spectral sequence) of bipartite knots, for arbitrary potentials of arbitrary degree, over the
complex numbers, integers and finite prime fields (beware: for n � 4, the results over integers
and prime fields have not been proven correct, cf. Remark 5.6). Thanks to the divide-and-
conquer algorithm (and implementation details such as sparse matrices and multiprocessing)
it does so in reasonable time, for example, the calculation of P (11,−9, 8) (a 28-crossing knot)
over some random potential of degree 5 over the integers takes five minutes. Some of the
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examples calculated with khoca can be found in Section 3.2. The program will shortly be
made publicly available.

6. Outlook

Throughout the text, we have worked over the complex numbers. However, we expect our results
to generalize to cohomologies over finite fields, yielding different slice genus lower bounds.

The knight move conjecture arose quickly after Khovanov cohomology [1, 6], but is still open;
phrased in the language of this article, it simply states that the spectral sequence of Cx2−1

(over the complex numbers) collapses on the third page (which is the first significant page after
E1). There is some weak evidence against the conjecture: no ‘reason why it should be true’ is
known, and the lack of a counterexample could simply come from our limited ability to calculate
cohomology of large knots. Moreover, generalizations of the conjecture fail: for example, the
spectral sequences of Cx2−1(T (7, 8)) over F7, Cx2−1(T (6, 7)) over F3 or Cx3−1(T (5, 6)) over F5

collapse only on the second significant page after E1 ([2], and calculations with foamho [14]).
Nevertheless, it might be noteworthy that all small knots K that we considered displayed the
following behavior: let E be the spectral sequence of C∂w(K) (over C), then E2 deg ∂w−1 = E∞.

There is a new potential topological application of the invariants: we have seen that
the sliceness obstructions arising from unreduced cohomologies are not all equivalent to
concordance homomorphisms. So, they could potentially be used to prove the non-sliceness
of a knot that represents torsion in the concordance group, such as an amphichiral knot. We
do not know, for example, of a reason why for some amphichiral knot K and some separable
potential ∂w, we could not have

H∂w(K) = 3 where deg ∂w = 3,

or H∂w(K) = 2q−1 + 2q where deg ∂w = 4.

Note that either of these is in accordance with Proposition 2.12 and 2.13, and obstructs
sliceness since H∂w(U) = [deg ∂w]. In contrast, invariants such as knot signatures or slice-torus
invariants must necessarily vanish on such knots.
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22. P. Ozsváth, A. I. Stipsicz and Z. Szabó, ‘Concordance homomorphisms from Knot Floer homology’,

Preprint 2014, http://arxiv.org/abs/1407.1795.
23. T. Przytycka and J. H. Przytycki, Signed dichromatic graphs of oriented link diagrams and matched

diagrams (Univ. of British Columbia, 1987) notes.
24. J. A. Rasmussen, ‘Khovanov homology and the slice genus’, Invent. Math. 182 (2010) 419–447.
25. D. E. V. Rose and P. Wedrich, ‘Deformations of colored sln link homologies via foams’, Geom. Topol.,

to appear.
26. H. Wu, ‘On the quantum filtration of the Khovanov–Rozansky cohomology’, Adv. Math. 221 (2009) 54–139.
27. H. Wu, ‘Generic deformations of the colored sl(N)-homology for links’, Algebr. Geom. Topol. 11 (2011)

2037–2106.
28. H. Wu, ‘Equivariant Khovanov-Rozansky homology and Lee-Gornik spectral sequence’, Quantum Topol.

6 (2015) 515–607.

Lukas Lewark
Mathematisches Institut
Universität Bern
Sidlerstrasse 5
3012 Bern
Switzerland

lukas@lewark·de
http://www.lewark.de/lukas/

Andrew Lobb
Mathematical Sciences
Durham University
South Road
Durham DH1 3LE
UK

andrew·lobb@durham·ac·uk
http://www.maths.dur.ac.uk/users/

andrew.lobb/

http://lewark.de/lukas/foamho.html
http://arxiv.org/abs/1407.1795
http://www.lewark.de/lukas/
http://www.maths.dur.ac.uk/users/andrew.lobb/
http://www.maths.dur.ac.uk/users/andrew.lobb/

	1
	2. The slice genus lower bounds from separable potentials
	3. Comparing different potentials
	4. Further illuminating examples
	5. Computer calculations
	6. Outlook
	References

