

Search for metastable heavy charged particles with large ionization energy loss in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ using the ATLAS experiment

The ATLAS Collaboration

Abstract

This paper presents a search for massive charged long-lived particles produced in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ at the LHC using the ATLAS experiment. The dataset used corresponds to an integrated luminosity of $3.2 \mathrm{fb}^{-1}$. Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as R-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the $\sqrt{s}=8 \mathrm{TeV}$ dataset, thanks to the increase in expected signal cross-section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross-sections and masses are set. Gluino R-hadrons with lifetimes above 0.4 ns and decaying to $q \bar{q}$ plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 GeV and 1590 GeV . In the case of stable R-hadrons the lower mass limit at the 95% confidence level is 1570 GeV .

1 Introduction

Massive, long-lived particles (LLPs) are predicted by a wide range of physics models that extend the Standard Model (SM). LLPs arise in proposed solutions to the gauge hierarchy problem [1], including supersymmetric (SUSY) models that either violate [2-4] or conserve [5-12] R-parity. The lifetime of these particles depends on the mass difference between the particle and the lightest stable SUSY particle, and on the size of any R-parity-violating coupling [13].

Because of their large mass, LLPs are expected to be slow (β significantly below 1) and, if charged, to have a specific ionization higher than any SM particles of unit charge at high momenta. The Pixel subsystem [14] of the ATLAS detector [15] provides measurements of ionization energy loss ($\mathrm{d} E / \mathrm{d} x$) for charged particles and can be used to distinguish such highly ionizing particles from SM particles. In this paper, this information is used to search for LLPs using data collected at $\sqrt{s}=13 \mathrm{TeV}$, extending in reach a study performed on data collected at $\sqrt{s}=8 \mathrm{TeV}$ [16]. The increase in probability for highenergy parton-parton collisions significantly enhances the production cross-section of LLPs via the strong interaction. Together with this enhancement, the search sensitivity has been considerably extended thanks to the upgrades to the Pixel detector (see Section 2) and improvements to the analysis (see Section 6).

Many strategies have been explored to find LLPs at the LHC. A search using the complete $\sqrt{s}=8 \mathrm{TeV}$ dataset recorded by the ATLAS detector [17] combined Pixel $\mathrm{d} E / \mathrm{d} x$ information with time-of-flight measurements, made in both the calorimeters and the muon spectrometer, to search for LLPs that do not decay within the detector. Charginos that are nearly mass degenerate with the lightest stable particle have been searched for in ATLAS looking for disappearing tracks [18]. A displaced vertex search [19] performed by the ATLAS Collaboration provided limits on the mass of gluinos decaying due to couplings violating both R-parity and lepton number conservation. The CMS Collaboration published an analysis searching for nondecaying LLPs based on $\mathrm{d} E / \mathrm{d} x, \beta$, and muon identification [20]. Additional analyses at the CMS experiment searched for LLPs with short lifetimes by looking for secondary vertices [21, 22] and for disappearing tracks [23].

The current study addresses many different models of new physics, in particular those that predict the production of metastable massive particles with $O(\mathrm{~ns})$ lifetime at LHC energies, such as mini-split SUSY [11, 24, 25] or anomaly-mediated supersymmetry-breaking (AMSB) models [26, 27]. A metastable gluino with a mass of approximately 1 TeV would be compatible with the measured Higgs boson mass according to mini-split SUSY models, which also predict squarks with masses of $10^{3}-10^{5} \mathrm{TeV}$, therefore making the gluino the only observable sparticle produced through the strong interaction at LHC energies. Results are presented assuming the production of R-hadrons as composite colorless states of a gluino together with SM quarks or gluons and the subsequent decay, on nanosecond timescales, of the gluino to a stable neutralino and a $q \bar{q}$ pair [28]. This search could, in principle, also be sensitive to the production of LLPs through weak interactions, but these models are not considered here as the cross-sections are much lower.

In the rest of this paper, R-hadrons with lifetimes consistent with decaying inside the ATLAS detector are referred to as metastable; the search strategy focusses on decays occurring within the active detector volume, which covers lifetimes from around 1 ns to several tens of ns. R-hadrons whose lifetime disfavors decay within the ATLAS detector are termed stable. The approach described in this paper allows direct observation of charged R-hadrons which are either stable or metastable and traverse the first seven layers of the ATLAS inner tracking system.

2 ATLAS Detector and Pixel $\mathrm{d} E / \mathrm{d} x$ measurement

The ATLAS detector ${ }^{1}$ consists of a tracker, for measuring the trajectories of charged particles, surrounded by a solenoid magnet, followed by calorimeters for measuring the energy of particles that interact electromagnetically or hadronically. A muon spectrometer immersed in a toroidal magnetic field surrounds the calorimeters, and provides tracking for muons. The detector is hermetic and can therefore measure the missing transverse momentum associated with each event. A complete description of the ATLAS detector can be found in Ref. [15]. The tracker is made of three detector systems. Moving from the solenoid magnet toward the beam collision region, there is first a transition radiation tracker with approximately 400,000 channels [29], followed by a silicon microstrip detector (SCT) with about 6 million channels [30], and at the innermost radius sits a roughly 92 million channel silicon Pixel detector, which is crucial for this measurement, and is described below in some detail.

The current Pixel detector provides at least four precision measurements for each track in the region $|\eta|<2.5$ at radial distances of 3.4 to 13 cm from the LHC beam line. After Run 1, the ATLAS Pixel detector was upgraded with the insertion of an additional layer, the Insertable B-Layer (IBL), which was installed inside the Run 1 Pixel detector, mounted on a new beam pipe of smaller diameter. The IBL has smaller area pixels, reduced thickness, and different coding electronics, which provides charge measurements with lower resolution and dynamic range than the other Pixel layers. It therefore requires a separate treatment of the $\mathrm{d} E / \mathrm{d} x$ information. At normal incidence, the average charge released by a minimum ionizing particle (MIP) in a pixel sensor is $\approx 20000 e^{-}\left(\approx 16000 e^{-}\right.$for IBL) and the charge threshold is set to $3500 \pm 40 e^{-}$($2500 \pm 40 e^{-}$for IBL). Signals are accepted if they are larger than this threshold. They are then matched to a specific beam crossing. The hit efficiency under these conditions exceeds 99%. When detector data are read out, the Time over Threshold (ToT), i.e. the time interval with the signal above the threshold, is digitized with 8 bits (4 bits for IBL). The ToT is approximately proportional to the ionization charge [31] and its dynamic range corresponds to 8.5 times (1.5 times for IBL) the average charge released by a MIP for a track normal to the silicon detectors which deposits all its ionization charge in a single pixel. If this value is exceeded, the hit charge information is either underestimated in the IBL, where the electronics signals the excess with an overflow bit, or lost in the other pixel layers.
The charge released by a track crossing the Pixel detector is rarely contained within just one pixel; neighboring pixels registering hits are joined together using a connected component analysis [32,33] to form clusters. The charge of a cluster is calculated by summing the charges of all pixels belonging to the cluster after calibration corrections; the IBL overflow information is accounted for separately. The $\mathrm{d} E / \mathrm{d} x$ is estimated using the average of the individual cluster ionization measurements (charge collected in the cluster per unit track length in the sensor), for the clusters associated with a track. To reduce the effect of the tails of the Landau distribution, the average is evaluated after removing the highest $\mathrm{d} E / \mathrm{d} x$ cluster, or the two highest $\mathrm{d} E / \mathrm{d} x$ clusters in the rare case of more than four clusters on the track. A track is considered to have a good ionization measurement only if there are at least two remaining clusters. Including the IBL charge information reduces the tails of the $\mathrm{d} E / \mathrm{d} x$ distribution, as illustrated in Figure 1, and increases the fraction of tracks for which the ionization measurement is valid from 77% to 91%. The most probable value of the measured $\mathrm{d} E / \mathrm{d} x$ is $1.12 \mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}$ for a minimum ionizing particle. This value

[^0]

Figure 1: Distribution of the $\mathrm{d} E / \mathrm{d} x$ computed with the Pixel algorithm in data (black dots) and Pixel without IBL (red triangles) for minimum bias event tracks selected as in Ref. [34], with the additional requirements of $p>3 \mathrm{GeV}$ and at least two associated pixel clusters. The corresponding $\mathrm{d} E / \mathrm{d} x$ distributions for simulation with and without the IBL are also plotted, respectively, as dashed and dotted lines. The simulation overestimates the $\mathrm{d} E / \mathrm{d} x$, which is taken into account in the systematic uncertainty evaluation. The addition of IBL clusters reduces the tails at both low and high $\mathrm{d} E / \mathrm{d} x$. The fraction of tracks with $\mathrm{d} E / \mathrm{d} x<0.5(>1.8) \mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}$ decreases with the use of the IBL charge information from 0.065% to 0.018% (from 0.89% to 0.44%).
is obtained with a gaussian fit to the data using the complete Pixel detector (see Figure 1); the variance of the gaussian fit is $0.13 \mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}$. The $\beta \gamma$ measurable with the current $\mathrm{d} E / \mathrm{d} x$ method cannot be smaller than approximately 0.3 for particles with unit charge because of the ToT dynamic range.

3 Mass Calculation

The average energy loss of massive, charged particles in matter is expected to follow the Bethe-Bloch distribution, which can be expressed as a function of the $\beta \gamma$ of the LLPs. Their mass can be derived from a fit of the measured specific energy loss and the reconstructed momentum to a parametric Bethe-Bloch distribution in the range $0.3<\beta \gamma<1.5$. This range overlaps the expected average $\beta \gamma$ of LLPs produced at the LHC, which decreases with the particle mass from $\langle\beta \gamma\rangle \approx 2.0$ at 100 GeV to $\langle\beta \gamma\rangle \approx 0.5$ at 1600 GeV . The parametric function describing the relationship between the most probable value of the energy loss $(\mathrm{d} E / \mathrm{d} x)_{\mathrm{MPV}}$ and $\beta \gamma$ is:

$$
\begin{equation*}
(\mathrm{d} E / \mathrm{d} x)_{\mathrm{MPV}}(\beta \gamma)=\frac{p_{1}}{\beta^{p_{3}}} \ln \left(1+\left[p_{2} \beta \gamma\right]^{p_{5}}\right)-p_{4} \tag{1}
\end{equation*}
$$

The p_{i}, with $i=1 \ldots 5$, calibration constants were measured in this data set using low-momentum pions, kaons and protons reconstructed in ATLAS as described in Ref. [35].

The distribution of the $\mathrm{d} E / \mathrm{d} x$ versus momentum is shown in Figure 2 together with the fits to the pion, kaon and proton masses. The mass calculation performed through the $\mathrm{d} E / \mathrm{d} x$ method is monitored by checking the stability of the proton mass measurement during the data taking.

Figure 2: Two-dimensional distribution of $\mathrm{d} E / \mathrm{d} x$ versus charge signed momentum (qp) for minimum-bias event tracks compatible with a primary vertex, which has the same data selection as in Ref. [34]. The distributions of the most probable value for the fitted probability density functions of pions, kaons and protons are superimposed.

A mass estimate M is obtained by numerically solving the equation 1 for the unknown M. In simulated R-hadron events, the reconstructed mass is found to reproduce well the generated mass up to masses around 1800 GeV , and a residual 3% correction is applied to the reconstructed mass to improve the agreement. For particles with higher masses (beyond the current sensitivity of this analysis), the reconstructed mass is observed to slightly underestimate the generated mass. The half-width at half maximum of the reconstructed mass distribution increases with the mass value. This is due to the momentum measurement uncertainty dominating the mass resolution for masses greater than $\approx 200 \mathrm{GeV}$.

$4 \boldsymbol{R}$-hadron Simulation

A number of samples of simulated signal events are used in this analysis to determine the expected LLP signal efficiencies and to estimate uncertainties in the efficiency.

For stable R-hadrons, pair production of gluinos with masses between 800 GeV and 1800 GeV is simulated in Pythia 6.4.27 [36] with the AUET2B [37] set of tuned parameters for the underlying event and the CTEQ6L1 [38] parton distribution function (PDF) set, incorporating dedicated hadronization routines [39] to produce final states containing R-hadrons.

The cross-sections are calculated at next-to-leading order in the strong coupling constant (NLO), including the resummation of soft-gluon emission at next-to-leading-logarithmic accuracy (NLO+NLL) [4044]. The nominal cross-section predictions and the uncertainty are taken from an envelope of crosssection predictions using different PDF sets and factorization and renormalization scales, as described in Ref. [45].

Selected events containing R-hadrons undergo a full detector simulation [46], where interactions of R hadrons with matter are handled by dedicated Geant4 [47] routines based on the physics model described
in Refs. [39, 48]. This model assumes, for each light valence quark, a cross-section of 12 mb per nucleon and neglects the heavy parton, other than as a reservoir of kinetic energy. This hadronic scattering is described through a purely phase-space-driven approach. The probability for a gluino to form a gluongluino bound state is assumed to be 10% [5].

The simulation of samples of metastable gluino-based R-hadrons is performed similarly to the stable R-hadrons. The gluinos within R-hadrons are then required to decay via the process $\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$, using Pythia 6. Gluino masses (m) between 400 GeV and 3000 GeV are simulated, with the neutralino mass fixed to 100 GeV . This benchmark decay mode is chosen as it has the highest sensitivity among those studied in Ref. [16]. Heavier neutralino masses would give lower signal efficiencies, mainly because of the smaller missing transverse momentum available to trigger. The gluino lifetime (τ) is varied from 0.4 ns to 50 ns .

All simulated samples include a modeling of pileup, adding the expected number of minimum bias proton-proton interactions from the same (in-time pileup) and nearby (out-of-time pileup) bunch crossings. Simulated events are reconstructed using the software used for the collision data.

Additional samples of gluinos are generated for all mass points using MG5_aMC@NLO [49], to get a more accurate description of radiative effects than Pythia 6 provides. The distribution of the transverse momentum of the gluino-gluino system simulated with Pyтнia 6 is then reweighted in such a way as to match that obtained in samples simulated with MG5_aMC@NLO. This is especially important for stable R-hadrons as detailed in Section 6.

5 Search Strategy

This search is based on the signature of R-hadron events containing at least one reconstructed track with large measured $\mathrm{d} E / \mathrm{d} x$ and high transverse momentum $\left(p_{\mathrm{T}}\right)$. This signature optimizes the search for metastable R-hadrons with lifetimes of $O(\mathrm{~ns})$, as the selection requires that the R-hadron only live long enough to traverse the seven layers of the silicon detectors, corresponding to a distance from the beam axis of 37 cm . The search is also sensitive to R-hadrons with longer lifetimes, with a small dependence on the modeling of the interaction of R-hadrons in the calorimeter and muon systems.

The expected production and interaction of R-hadrons in the detector is described in detail in Ref. [50]. In the models studied in this search and described in Section 4, pair-produced gluinos hadronize into two colorless R-hadrons with the following charge states: approximately 33% events with two neutral R-hadrons, 47% events with one neutral and one charged R-hadron, and 20% events with two charged R-hadrons. The fragmentation is extremely hard and the R-hadrons are therefore isolated. As massive particles with $\beta<1$, the charged R-hadrons are expected to deposit more ionization energy in the detector than typical particles of the same momentum. This ionization signature is used both to select signal events, as described in Section 6, and to calculate the mass of selected candidates, as described in Section 3. The estimated candidate mass is used as the final search discriminant.

If the R-hadrons decay before or in the calorimeter, the decay products of R-hadrons in models studied here include quarks, which are identified as jets in the calorimeters (see Section 6), and a 100 GeV neutralino, which carries away significant momentum undetected. If R-hadrons traverse the calorimeter without decaying, they are expected to deposit significantly less energy in the calorimeters than SM hadrons of the same momentum, as the heavy parton carries almost all the momentum of the composite particle and limited kinetic energy is available for interactions between the light SM partons and the
detector. In the models studied here, over 90% of stable R-hadrons, independent of mass, deposit less than 20 GeV of energy in the calorimeters. However, the electric charge of the R-hadron can change due to the hadronic interactions, even if little energy is lost, and the charge of the R-hadron leaving the calorimeter is expected to be decoupled from the charge at production [50]. As hadronic interactions are rare in the tracking detectors, the probability for an R-hadron to change its electric charge before the calorimeters is only around 3%.

Events are selected by a trigger requiring missing transverse momentum $\left(E_{\mathrm{T}}^{\text {miss }}\right)$, calculated from energy deposits in the calorimeter [51]. For events with R-hadrons that decay before or inside the calorimeter, undetected neutralinos contribute to the measured transverse momentum imbalance. As stable R-hadrons deposit little energy in the calorimeters, most stable R-hadron events are selected by the trigger only when QCD initial-state radiation (ISR) boosts the R-hadron pair system. Details of the event selection are given in Section 6.

6 Data Sample and Event Selection

The data sample used for this search was collected while tracking detectors, calorimeters, muon chambers, and magnets were operating normally and corresponds to an integrated luminosity of $3.2 \mathrm{fb}^{-1}$ in 2015 . The luminosity measurement was calibrated during dedicated beam-separation scans, using the same methodology as that described in Ref. [52]. The uncertainty in the luminosity measurement is 5\%.

Candidate events are selected by an $E_{\mathrm{T}}^{\text {miss }}$ trigger, formed from energy deposits in the calorimeter [51], with a threshold of 70 GeV .

The event selection, described in detail below, was optimized relative to the $\sqrt{s}=8 \mathrm{TeV}$ search [16] to improve the sensitivity to events with R-hadrons relative to background events from SM processes. Major improvements include the addition of selections designed to reject tracks from hadrons and electrons, as well as changes to the isolation requirements, which now reject background events from overlapping tracks by identifying clusters in the Pixel or SCT detectors which are consistent with energy deposition from multiple particles. Two signal regions are defined: one targets metastable R-hadrons with shorter lifetimes, and the other is optimized for metastable or stable R-hadrons that are expected to pass through the muon spectrometer before decaying.

A primary vertex reconstructed from at least two well-reconstructed charged-particle tracks, each with $p_{\mathrm{T}}>400 \mathrm{MeV}$, is required in order to remove noncollision background events. If there is more than one such vertex in an event, the primary vertex is defined as the vertex with the largest scalar sum of associated track momentum. To reduce backgrounds from SM processes, events must have $E_{\mathrm{T}}^{\text {miss }}>130 \mathrm{GeV}$, where $E_{\mathrm{T}}^{\mathrm{miss}}$ is the offline missing transverse momentum. Jets are reconstructed with the anti- k_{t} algorithm [53] with radius parameter $R=0.4$ using clusters of energy depositions in the calorimeter as inputs. Events are rejected if they contain a jet with $E_{\mathrm{T}}>20 \mathrm{GeV}$ that is consistent with noise contributions as determined based on timing and shower shape information. The offline $E_{\mathrm{T}}^{\text {miss }}$ is estimated from reconstructed electrons with $|\eta|<2.47$, reconstructed muons with $|\eta|<2.5$, calibrated jets with $p_{\mathrm{T}}>20 \mathrm{GeV}$ within $|\eta|<4.5$, and reconstructed tracks which are not associated with other objects and that pass kinematic requirements designed to reject poorly reconstructed tracks.

For signal events, the trigger efficiency varies significantly depending on the model considered. For metastable R-hadrons with a mass of 1000 GeV , decaying into a 100 GeV neutralino and quarks, the trigger efficiency increases from 65% for R-hadrons with a lifetime of 50 ns to 95% for R-hadrons with
a lifetime of 0.4 ns . For an R-hadron with a lifetime of 10 ns , the trigger efficiency increases slightly with the R-hadron mass, from 91% for a mass of 1000 GeV to 96% for a mass of 1600 GeV . For stable R-hadrons, the trigger efficiency is approximately 40% for all masses studied. All efficiencies quoted in this section include both the acceptance and the selection efficiency effects.

The offline $E_{\mathrm{T}}^{\text {miss }}$ calculation includes the momentum of identified muons, which is important to reject background events from SM processes with muons, such as $Z \rightarrow \mu \mu$, that pass the calorimetric $E_{\mathrm{T}}^{\text {miss }}$ trigger. For events with metastable R-hadrons, the offline $E_{\mathrm{T}}^{\text {miss }}$ requirement is very efficient (around 95\%) due to the neutralinos in the event. For stable R-hadrons that pass the trigger requirement, the offline $E_{\mathrm{T}}^{\text {miss }}$ cut is also efficient (around 90%), as the R-hadrons do not deposit significant energy in the calorimeter and in most events the R-hadron pair is boosted from initial-state radiation. Many R-hadrons fail to be identified as muons because they are in a neutral charge state going through either the inner detector or the muon spectrometer. Even if a charged R-hadron with $\beta<1$ traverses the muon spectrometer, it can fail to be identified by the standard muon reconstruction algorithm as a prompt muon due to its late time of arrival. In a typical R-hadron model considered in this search, only 30% of stable R-hadrons with a reconstructed track in the inner detector are identified as prompt muons entering into the $E_{\mathrm{T}}^{\text {miss }}$ calculation.

Selected events must contain at least one candidate R-hadron track. For a track to be identified as a candidate, it must have $p_{\mathrm{T}}>50 \mathrm{GeV}$ and meet the following selection criteria. The track must contain at least seven clusters from silicon detector layers in order to make a good measurement of the track's momentum, must have a cluster in the innermost Pixel layer if expected, and must be associated with the primary vertex. In order to ensure a good ionization measurement, the track must have at least two clusters in the Pixel detector used to measure $\mathrm{d} E / \mathrm{d} x$. These selection requirements on associated clusters are summarized as cluster requirements.

To reject background events with overlapping tracks that could produce clusters with significant measured ionization, the candidate track must not contain any cluster that is compatible with contributions from two or more tracks. This requirement is over 90% efficient for signal events with lifetimes of 3 ns or greater. For background tracks, it lessens the high ionization tail of the distribution from photon conversions and collimated particles, reducing the size of the background and leaving the remaining tracks with a $\mathrm{d} E / \mathrm{d} x$ distribution largely independent of background source. In order to reduce backgrounds from particles inside hadronic jets, the scalar sum of the $p_{\mathrm{T}}\left(\sum p_{\mathrm{T}}\right)$ of other tracks, with $p_{\mathrm{T}}>1 \mathrm{GeV}$ and consistent with the primary vertex, in a cone of size $\Delta R<0.25$, where $\Delta R \equiv \sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}$, around the candidate track, must be less than 20 GeV .

The background from SM processes is further reduced by requiring that the candidate track momentum exceeds 150 GeV and that the relative uncertainty on the momentum measurement be less than 50%. The contribution from leptons from W boson decays is reduced by imposing a condition that the transverse mass, m_{T}, built with the candidate track and the $E_{\mathrm{T}}^{\mathrm{miss}}$, be greater than 130 GeV , where:

$$
\begin{equation*}
m_{\mathrm{T}}=\sqrt{2 p_{\mathrm{T}} E_{\mathrm{T}}^{\mathrm{miss}}\left(1-\cos \left(\Delta \phi\left(E_{\mathrm{T}}^{\mathrm{miss}}, \text { track }\right)\right)\right)} \tag{2}
\end{equation*}
$$

and $\Delta \phi\left(E_{\mathrm{T}}^{\text {miss }}\right.$, track $)$ is the azimuthal separation between the track and the $E_{\mathrm{T}}^{\text {miss }}$. This selection has an efficiency between 78% and 89% for R-hadrons with lifetimes of 3 ns or greater, and reduces the background by roughly a factor of three.

Background events due to tracks from electrons and hadrons are reduced by requiring that the energy of any jet associated with the candidate track must be less than the candidate track's measured momentum. Jets are associated with tracks if they are within $\Delta R<0.05$ of the candidate track and have $p_{\mathrm{T}}>20 \mathrm{GeV}$. Background events containing electrons are further reduced by rejecting candidate tracks associated with a jet with 95% or more of its energy deposited in the electromagnetic calorimeter. These selections are found to be 95% efficient for all signal models studied.

Tracks identified as well-reconstructed muons with $p_{\mathrm{T}}>25 \mathrm{GeV}$ are rejected in the search for metastable R-hadrons with lifetimes of 30 ns or less. R-hadrons with a lifetime equal to or greater than 50 ns typically reach the muon spectrometer, and therefore no such veto is applied in the long-lived R-hadron search. To further reject hadronic background in the search for stable R-hadrons, the isolation requirement on the $\sum p_{\mathrm{T}}$ of nearby tracks is tightened from 20 GeV to 5 GeV for candidate R-hadron tracks, eliminating 30% of the remaining expected background.

The specific ionization of the candidate track, as measured by the Pixel detector, must be larger than $1.80-0.11|\eta|+0.17 \eta^{2}-0.05|\eta|^{3} \mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{-2}$. This requirement corrects the slight (5\%) $|\eta|$ dependence of the $\mathrm{d} E / \mathrm{d} x$ measurement [54] while maximizing the expected sensitivity to signal events. This selection is approximately $70-90 \%$ efficient for signal events with lifetimes of 3 ns or greater, depending on the R-hadron mass, and retains less than 1% of background events. Additionally, a time-dependent correction is applied to the ionization measurement in data to account for an observed variation in the charge measurement by the IBL electronics due to effects of radiation. The size of this correction is around 5%.

The observed numbers of events in data and the predicted numbers of simulated signal events, for a $1600 \mathrm{GeV} R$-hadron with a lifetime of 10 ns , are shown in Table 1 after each stage of the event selection. The total selection efficiency relative to generated events, which includes both the acceptance and efficiency effects, is also shown for the signal.

Selection level	Exp. signal events	Observed events in $3.2 \mathrm{fb}^{\mathbf{- 1}}$
Generated	26.0 ± 0.3	
$E_{\mathrm{T}}^{\text {miss }}$ trigger \& preselection	24.8 ± 0.3 (95\%)	
$E_{\mathrm{T}}^{\text {miss }}>130 \mathrm{GeV}$	$23.9 \pm 0.3(92 \%)$	
Track $p_{\text {T }}>50$ and cluster requirements	$10.7 \pm 0.2(41 \%)$	368324
Isolation requirement	$9.0 \pm 0.2(35 \%)$	108079
Track $p>150 \mathrm{GeV}$	$6.6 \pm 0.2(25 \%)$	47463
$m_{\mathrm{T}}>130 \mathrm{GeV}$	$5.8 \pm 0.2(22 \%)$	18746
Electron \& hadron veto	$5.5 \pm 0.2(21 \%)$	3612
Muon veto	$5.5 \pm 0.2(21 \%)$	1668
Ionization requirement	$5.0 \pm 0.1(19 \%)$	11

Table 1: Expected number of events at different steps of the selection for metastable 1600 GeV gluino R-hadrons decaying with a 10 ns lifetime, along with the number of events observed in data, for $3.2 \mathrm{fb}^{-1}$. The simulated yields are shown with statistical uncertainties only. The total efficiency \times acceptance is also shown in parentheses for the signal.

7 Signal Selection Efficiency

The overall signal selection efficiency depends on the mass and lifetime of the signal, ranging from about 19% for a $1600 \mathrm{GeV} R$-hadron with a lifetime of 10 ns to less than 1% for R-hadrons with a lifetime of 0.4 ns . The trigger and offline $E_{\mathrm{T}}^{\text {miss }}$ requirements are more efficient for R-hadrons that decay before or inside the calorimeters. However, as the R-hadron lifetime decreases, the probability of reconstructing the track from the original R-hadron in the silicon detectors decreases. For these two reasons, R-hadrons with lifetimes in the $10-30 \mathrm{~ns}$ range have the highest selection efficiency.

The inefficiency for selecting R-hadrons with short lifetimes can be better understood by calculating the selection efficiency relative to a simple fiducial region that separates out acceptance effects due to basic kinematic properties of the R-hadrons. An event is considered to be within the fiducial acceptance if it contains at least one R-hadron that passes the following requirements at MC generator level: charged at production, $p_{\mathrm{T}}>50 \mathrm{GeV}, p>150 \mathrm{GeV},|\eta|<2.5$, and transverse decay distance $\geq 37 \mathrm{~cm}$ from the origin. With this definition, the acceptance for R-hadron events with a lifetime of 1 ns ranges from 7% for a mass of 600 GeV to 4% for a mass of 1600 GeV . The selection efficiency for R-hadron events in the fiducial region has only a mild dependence on the mass; in the R-hadron mass range from 600 to 1600 GeV , the selection efficiences are 20% to 25% ($\tau=1 \mathrm{~ns}$), 35% to 39% ($\tau=3 \mathrm{~ns}$), 39% to 45% ($\tau=10 \mathrm{~ns}$), and 31% to 35% ($\tau=30 \mathrm{~ns}$), respectively.

Table 2 summarizes the systematic uncertainties in the predicted signal yields. The systematic uncertainties are calculated and used independently for each mass bin and signal lifetime. In the table, only the maximum uncertainty is quoted.

The trigger and offline $E_{\mathrm{T}}^{\text {miss }}$ selections are sensitive to the modeling of ISR in the event, in particular for signal events that do not decay inside the detector volume. Half of the difference between the selection efficiency of the PYthia 6 samples and those reweighted with MG5_aMC@NLO is taken as an uncertainty due to radiative effects.

The $E_{\mathrm{T}}^{\text {miss }}$ trigger modeling is studied in a sample of $Z \rightarrow \mu \mu$ events and an uncertainty is assigned based on differences between efficiencies measured in data and in simulation. The uncertainty in the $E_{\mathrm{T}}^{\text {miss }}$ calibration comes primarily from uncertainties on the jet energy scale. A systematic uncertainty in the measurement of the Pixel ionization is evaluated by comparing the ionization of an inclusive sample of simulated and observed low-momentum tracks. An asymmetric uncertainty is assigned due to the selection efficiency difference observed after the most probable value of the signal distribution is reweighted based on the comparison of low-momentum tracks between data and simulation. The uncertainty in the signal acceptance is asymmetric since the ionization in simulation is systematically larger than that observed in data. An uncertainty in the efficiency of the muon veto is estimated by studying the modeling of the muon spectrometer's timing measurement.

The signal selection efficiency is found to be largely independent of the number of pileup events in simulation. However, to cover any remaining difference, efficiency differences from variations in the pileup distributions are accounted for as an additional source of uncertainty. The uncertainty on the momentum scale and resolution of the tracks results in a small uncertainty in the selection efficiency. Variations of the requirements to reject tracks from electrons and hadrons are found to have a negligible effect on the signal efficiency. The theoretical uncertainty in the signal cross-section is described in Section 4.

Source of uncertainty	$-[\%]$	$+[\%]$
ISR modeling $(R$-hadron stable $)$	14	14
ISR modeling $(R$-hadron metastable)	1.5	1.5
Trigger turn-on	0.9	0.9
$E_{\mathrm{T}}^{\text {miss }}$ scale	1.1	2.2
Pileup	1.1	1.1
Ionization parameterization	7.1	0
Momentum parameterization	0.3	0.3
μ identification (metastable only)	4.3	4.3
Total systematic uncertainty in acceptance \times efficiency		
Stable R-hadron	16	14
Metastable \boldsymbol{R}-hadron	9	5
Luminosity	5	5
Signal cross-section	28	28

Table 2: Systematic uncertainties on the predicted signal yields. The uncertainty depends on the mass and on the lifetime; only the maximum negative and positive values across all signal models (see Section 4) are reported here.

8 Background Estimation

The expected shape and normalization of the mass distribution of background events from SM processes is derived from data. The distributions of key variables are extracted in two control regions in data and these templates are used to generate the expected background distribution in the signal region. The choice of control samples takes into account the measured correlations between the key variables $p, \mathrm{~d} E / \mathrm{d} x$ and η, and the control region selections minimize the possible signal contamination. The same regions are used in the searches for stable and metastable particles, except for the rejection of track candidates identified as muons in the latter case and for the tighter track isolation requirement in the former case.

The first control region (hereafter called CR1) is selected by applying all the selections described in Section 6, except for the requirement on high ionization, which is inverted. The tracks in this control region are kinematically similar to those in the signal region for SM processes, and the expected p and $\eta(p)$ distributions of tracks from background processes are extracted from this region. The second sample (CR2 hereafter) is selected by inverting the $E_{\mathrm{T}}^{\text {miss }}$ requirement ($E_{\mathrm{T}}^{\text {miss }}<130 \mathrm{GeV}$), while keeping all other selections unchanged. As more than 90% of R-hadron events that pass the trigger have $E_{\mathrm{T}}^{\text {miss }}>130 \mathrm{GeV}$, while the $E_{\mathrm{T}}^{\text {miss }}$ distribution from SM background processes falls steeply in the range $70-130 \mathrm{GeV}, \mathrm{CR} 2$ is background-dominated. Tracks from this region are used to derive $\mathrm{d} E / \mathrm{d} x$ templates in bins of η, as $E_{\mathrm{T}}^{\text {miss }}$ and $\mathrm{d} E / \mathrm{d} x$ are uncorrelated for tracks from SM processes. The signal contamination is less than 1% in both control regions for all R-hadron masses and lifetimes considered in this search.

The shape of the background in the signal region is estimated from the control region templates with the following procedure: 1 million ($p, \eta, \mathrm{~d} E / \mathrm{d} x$) triplets are generated, where the momentum is randomly sampled according to the template from CR1 tracks, the pseudorapidity is generated according to the $\eta(p)$-binned templates based on CR1 tracks, and the ionization is sampled according to $\mathrm{d} E / \mathrm{d} x(\eta)$-binned templates from CR2 tracks. This procedure maintains the measured correlations between p, η, and $\mathrm{d} E / \mathrm{d} x$ for tracks from SM sources. The particle mass M is calculated given the predicted $\mathrm{d} E / \mathrm{d} x$ and p values, using the technique explained in Section 3.

Source of uncertainty	$[\%]$
Statistical uncertainty from control region templates	15
Statistical uncertainty from normalization region	3
Analytical description of d $E / \mathrm{d} x$	4
Particle species composition of CR2	3
IBL ionization correction	4

Table 3: Summary table of the uncertainties in the background estimate. The uncertainties are evaluated integrating over the mass windows considered for the signal search (see Section 9). If the uncertainty depends on the mass, the largest value is quoted.

The normalization of the generated background is obtained by scaling the background to the data in the shoulder region of the mass distribution (i.e. $M<160 \mathrm{GeV}$), where a possible signal has already been excluded [16]. The normalization is performed on the samples before the ionization requirement. The expected mass distributions of the background and the observed data, before the ionization requirement, are shown in Figure 3 for the metastable R-hadrons selection.

Figure 3: Expected mass distribution from background events in the signal region for the metastable R-hadrons, before the ionization requirement is imposed. Data are superimposed. The yellow band around the background estimation includes both the statistical and systematic uncertainties. The ratio of data to expected background is shown in the lower panel with statistical uncertainties only.

Systematic uncertainties in the background estimate are evaluated by varying the relative fraction of muons in the control regions, using an analytical description to vary the shape of the high ionization tail in the $\mathrm{d} E / \mathrm{d} x$ template, and by changing the IBL ionization correction by $\pm 1 \sigma$. The statistical uncertainty in the template shape, which is estimated by Poisson fluctuations of the templates, dominates. There is also a small statistical uncertainty from the size of the normalization region. The breakdown of uncertainties in the background estimate is shown in Table 3.

The complete procedure is tested on signal-depleted validation regions. The validation regions are selected with the same requirements as for the nominal signal and control regions, but requiring the track
momentum to be in the range $50<p<150 \mathrm{GeV}$. Applied to these validation samples, the procedure described above yields a calculated background of 20.0 ± 3.0 (stat.) ± 1.2 (syst.) events in the validation region for metastable R-hadrons, while 14 events are observed in the data. For the control region for stable R-hadrons, 28.1 ± 4.2 (stat.) ± 1.9 (syst.) events are estimated from this procedure and 20 are observed. While the observed numbers of events in the validation regions are lower than predicted, they are consistent with statistical fluctuations at the level of 1.7σ.

9 Results

In data, 16 events are observed for the stable R-hadron selection and 11 are observed for the metastable selection. Table 4 summarizes the background estimates with total statistical and systematic uncertainty as well as the observed events for the metastable and stable R-hadron selection. The observed mass distribution in data is shown in Figure 4 for both selection regions, along with the background expectation.

Selection region	Background exp.	Data
Metastable R-hadron	$11.1 \pm 1.7 \pm 0.7$	11
Stable R-hadron	$17.2 \pm 2.6 \pm 1.2$	16

Table 4: Estimated number of background events and the number of observed events in data in the final selection regions. The background predictions show both the statistical and systematic uncertainties.

No evidence of a signal above the background is observed. Expected and observed upper limits on R hadron production cross-sections are evaluated at $95 \% \mathrm{CL}$ for a discrete set of R-hadron mass values by counting simulated signal, background and observed data events that survive the selection in a $\pm 1.4 \sigma$ wide mass window around the position of each simulated signal mass peak for the corresponding mass hypothesis being probed. The peak position and width are estimated by a Gaussian fit to each individual signal mass distribution ($\sigma \approx 280$ [$\approx 500] \mathrm{GeV}$ at an R-hadron mass of $1200[1600] \mathrm{GeV}$). When the lifetime of the R-hadron is long enough to reach the muon spectrometer, the stable selection becomes more efficient than the metastable one and improves the expected sensitivity. This transition happens around 50 ns . The choice of whether to apply the metastable or stable R-hadron selection to each lifetime is based on the best expected limit. Based on this procedure, the stable selection is applied to both the 50 ns and stable lifetimes.

The cross-section upper limits are extracted, separately for the stable and the metastable searches (in the latter case, for each lifetime value), with the $C L_{S}$ method [55], using the profile likelihood ratio as a test statistic. In the procedure, the systematic uncertainties in the signal and background yields, as evaluated in Section 7 and Section 8, are treated as Gaussian-distributed nuisance parameters. The statistical uncertainty in the background distribution also takes into account the uncertainty due to the normalization. Lower limits on the R-hadron mass are then derived, for each lifetime, by comparing the measured cross-section upper limits to the theoretically predicted production cross-section. The resulting lower limits set on the mass of the stable and metastable particles are summarized in Table 5.

The strongest mass limits are obtained for lifetimes of 10 ns or more. The cross-section upper limits for 10 ns lifetime R-hadrons decaying to $q \bar{q}$ plus a light neutralino of mass $m\left(\tilde{\chi}_{0}\right)=100 \mathrm{GeV}$ are shown in Figure 5. For this signal, the expected and observed lower mass limits are 1600 GeV and 1570 GeV , respectively. The 8 TeV result excluded R-hadrons with a 10 ns lifetime and masses up to 1185 GeV , using the lower edge of the $\pm 1 \sigma$ band around the theoretical cross-section.

Figure 4: Mass distribution for data and background for stable (top) and metastable (bottom) particle searches. The yellow band around the background estimation includes both the statistical and systematic uncertainties. Also shown are two examples for signals as expected for gluino R-hadrons in the explored mass range.

Selection	$\boldsymbol{\tau}[\mathbf{n s}]$	$\boldsymbol{M}_{\text {obs }}>[\mathbf{G e V}]$	$\boldsymbol{M}_{\text {exp }}>[\mathbf{G e V}]$
Metastable	0.4	740	730
$"$	1.0	1110	1150
$"$	3.0	1430	1470
$"$	10	1570	1600
$"$	30	1580	1620
$"$	50	1540	1590
Stable	50	1590	1590
$"$	stable	1570	1580

Table 5: Observed and expected 95% CL lower limit on mass is listed for gluino R-hadrons that are either stable or decaying to $q \bar{q}$ plus a light neutralino of mass $m\left(\tilde{\chi}_{0}\right)=100 \mathrm{GeV}$. The stable selection is more efficient for lifetimes of 50 ns or more.

The excluded regions on the lifetime-mass plane for R-hadrons decaying to $q \bar{q}$ plus a light neutralino of mass $m\left(\tilde{\chi}_{0}\right)=100 \mathrm{GeV}$ are shown in Figure 6.

Figure 5: cross-section as a function of mass for gluino R-hadrons with lifetime $\tau=10 \mathrm{~ns}$, decaying to $q \bar{q}$ plus a light neutralino of mass $m\left(\tilde{\chi}_{0}\right)=100 \mathrm{GeV}$. Theoretical values for the cross-section are shown with their error. The expected upper limits (UL) in the case of background only is shown by the solid black line, with its $\pm 1 \sigma$ and $\pm 2 \sigma$ bands, green and yellow respectively. The observed 95% UL is shown as a solid red line. The cross-section for the same process and the corresponding 95% UL measured at $\sqrt{s}=8 \mathrm{TeV}[16]$ are shown as dashed lines.

10 Conclusion

This paper presents the results of a search for massive, long-lived particles with lifetimes of $O(\mathrm{~ns})$ or longer, produced in $3.2 \mathrm{fb}^{-1}$ of $p p$ collision data at $\sqrt{s}=13 \mathrm{TeV}$ at the LHC, and identified by anomalous specific ionization energy loss in the ATLAS Pixel detector. This analysis takes advantage of the addition of a fourth silicon layer to the Pixel detector, the increased parton luminosity, and analysis improvements

Figure 6: Excluded range of lifetimes as a function of gluino R-hadron mass. The expected lower limit (LL), with its experimental $\pm 1 \sigma$ band, is given with respect to the nominal theoretical cross-section. The observed 95% LL obtained at $\sqrt{s}=8 \mathrm{TeV}$ [16] is also shown for comparison.
to significantly extend a search performed at $\sqrt{s}=8 \mathrm{TeV}$ [16]. No excess of events is observed over the background estimate. Gluino R-hadrons with lifetimes above 0.4 ns and decaying to $q \bar{q}$ plus a 100 GeV neutralino are excluded at the 95% confidence level with lower mass limit range between 740 GeV and 1590 GeV . In the case of stable R-hadrons the lower mass limit at the 95% confidence level is 1570 GeV . The observed lower limit on R-hadron masses increases by up to approximately 400 GeV relative to the equivalent analysis at $\sqrt{s}=8 \mathrm{TeV}$.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEADSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia;

MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[1] L. Susskind, The gauge hierarchy problem, technicolour, supersymmetry, and all that, Phys. Rept. 104 (1984) 181.
[2] H. K. Dreiner, An introduction to explicit R-parity violation (1997), arXiv:hep-ph/9707435.
[3] E. L. Berger and Z. Sullivan, Lower limits on R-parity-violating couplings in supersymmetry, Phys. Rev. Lett. 92 (2004) 201801.
[4] R. Barbieri et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1.
[5] M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1.
[6] C. F. Kolda, Gauge-mediated supersymmetry breaking: Introduction, review and update, Nucl. Phys. Proc. Suppl. 62 (1998) 266.
[7] H. Baer, K. Cheung and J. F. Gunion, A Heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002.
[8] S. J. Gates Jr. and O. Lebedev, Searching for supersymmetry in hadrons, Phys. Lett. B 477 (2000) 216.
[9] A. Mafi and S. Raby, An analysis of a Heavy Gluino LSP at CDF: The Heavy Gluino Window, Phys. Rev. D 62 (2000) 035003.
[10] M. Chertok et al., Phenomenology of a constrained standard model from an extra dimension, eConf C 010630 (2001) P310.
[11] G. F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65.
[12] N. Arkani-Hamed et al., Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3.
[13] M. R. Buckley, L. Randall and B. Shuve, LHC searches for non-chiral weakly charged multiplets, JHEP 1105 (2011) 097.
[14] G. Aad et al., ATLAS pixel detector electronics and sensors, JINST 3 (2008) P07007.
[15] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.
[16] ATLAS Collaboration, Search for metastable heavy charged particles with large ionisation energy loss in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$ using the ATLAS experiment, Eur. Phys. J. C 75 (2015) 407.
[17] ATLAS Collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at $\sqrt{s}=8$ TeV, JHEP 1501 (2015) 068.
[18] ATLAS Collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. D 88 (2013) 112006.
[19] ATLAS Collaboration, Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 072004.
[20] CMS Collaboration, Search for heavy long-lived charged particles in pp collisions at $\sqrt{s}=7 \mathrm{TeV}$, Phys. Lett. B 713 (2012) 408.
[21] CMS Collaboration, Search for long-lived neutral particles decaying to quark-antiquark pairs in proton-proton collisions at $\sqrt{s}=8$ TeV, Phys. Rev. D 91 (2015) 012007.
[22] CMS Collaboration, Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at $\sqrt{s}=8 \mathrm{TeV}$, Phys. Rev. D 91 (2015) 052012.
[23] CMS Collaboration, Search for disappearing tracks in proton-proton collisions at $\sqrt{s}=8 \mathrm{TeV}$, JHEP 1501 (2015) 096.
[24] N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 0506 (2005) 073.
[25] A Arvanitaki et al., Mini-Split, JHEP 1302 (2013) 126.
[26] G. F. Giudice et al., Gaugino mass without singlets, JHEP 9812 (1998) 027.
[27] L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79.
[28] G. R. Farrar and P. Fayet, Phenomenology of the Production, Decay, and Detection of New Hadronic States Associated with Supersymmetry, Phys. Lett. B 76 (1978) 575.
[29] E. Abat et al., The ATLAS Transition Radiation Tracker (TRT) proportional drift tube: Design and performance, JINST 3 (2008) P02013.
[30] ATLAS Collaboration, Operation and performance of the ATLAS semiconductor tracker, JINST 9 (2014) P08009.
[31] B. Aubert et al., The BABAR Detector, Nucl. Instrum. Meth. A 479 (2002) 1.
[32] A. Rosenfeld and J. L. Faltz, Sequential Operations in Digital Picture Processing, J. Assoc. Comput. Machinery 13 (4 1966) 471.
[33] ATLAS Collaboration, A neural network clustering algorithm for the ATLAS silicon pixel detector, JINST 9 (2014) P09009.
[34] ATLAS Collaboration, Charged-particle distributions in $\sqrt{s}=13$ TeV pp interactions measured with the ATLAS detector at the LHC (2016), arXiv:1602.01633 [hep-ex].
[35] ATLAS Collaboration,
$d E / d x$ measurement in the ATLAS Pixel Detector and its use for particle identification,
ATLAS-CONF-2011-016, 2011, urL: http://cdsweb.cern.ch/record/1336519.
[36] T. Sjöstrand, S. Mrenna and P. Skands, PYTHIA 6.4 Physics and Manual, JHEP 0605 (2006) 026.
[37] ATLAS Collaboration, Further ATLAS tunes of Pythia 6 and Pythia 8, ATL-PHYS-PUB-2011-014, 2011, urL: http://cds.cern.ch/record/1400677.
[38] J Pumplin et al.,
New generation of parton distributions with uncertainties from global QCD analysis, JHEP 0207 (2002) 012.
[39] A. C. Kraan, Interactions of heavy stable hadronizing particles, Eur. Phys. J. C37 (2004) 91.
[40] W. Beenakker et al., Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51.
[41] A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802.
[42] A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004.
[43] W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 0912 (2009) 041.
[44] W. Beenakker et al., Squark and Gluino Hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637.
[45] M. Krämer et al., Supersymmetry production cross sections in pp collisions at $\sqrt{s}=7 \mathrm{TeV}$ (2012).
[46] ATLAS Collaboration, The ATLAS simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823.
[47] S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.
[48] R. Mackeprang and A. Rizzi, Interactions of coloured heavy stable particles in matter, Eur. Phys. J. C 50 (2007) 353.
[49] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 1407 (2014) 079.
[50] R. Mackeprang and J. R. Hansen, 'Stable Heavy Hadrons in ATLAS', Presented 05 Oct 2007, PhD thesis: Copenhagen U., 2007, url: http://cds. cern.ch/record/1385016.
[51] ATLAS Collaboration, Performance of the ATLAS Trigger System in 2010, Eur. Phys. J. C 72 (2012) 1849.
[52] ATLAS Collaboration, Improved luminosity determination in pp collisions at $\sqrt{s}=7$ TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 73 (2013) 2518.
[53] M. Cacciari, G. P. Salam and G. Soyez, The anti- k_{t} jet clustering algorithm, JHEP 0804 (2008) 063.
[54] H. Bichsel, Straggling in thin silicon detectors, Rev. Mod. Phys. 60 (1988) 663.
[55] A. L. Read, Presentation of search results: The $C L_{S}$ technique, J. Phys. G 28 (2002) 2693.

The ATLAS Collaboration

M. Aaboud ${ }^{136 d}$, G. Aad ${ }^{87}$, B. Abbott ${ }^{114}$, J. Abdallah ${ }^{65}$, O. Abdinov ${ }^{12}$, B. Abeloos ${ }^{118}$, R. Aben ${ }^{108}$, O.S. AbouZeid ${ }^{138}$, N.L. Abraham ${ }^{150}$, H. Abramowicz ${ }^{154}$, H. Abreu ${ }^{153}$, R. Abreu ${ }^{117}$, Y. Abulaiti ${ }^{147 a, 147 b}$, B.S. Acharya ${ }^{164 \mathrm{a}, 164 \mathrm{~b}, a}$, L. Adamczyk ${ }^{40 \mathrm{a}}$, D.L. Adams ${ }^{27}$, J. Adelman ${ }^{109}$, S. Adomeit ${ }^{101}$, T. Adye ${ }^{132}$, A.A. Affolder ${ }^{76}$, T. Agatonovic-Jovin ${ }^{14}$, J. Agricola ${ }^{56}$, J.A. Aguilar-Saavedra ${ }^{\text {127a, 127f }}$, S.P. Ahlen ${ }^{24}$, F. Ahmadov ${ }^{67, b}$, G. Aielli ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, H. Akerstedt ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, T.P.A. Åkesson ${ }^{83}$, A.V. Akimov ${ }^{97}$, G.L. Alberghi ${ }^{22 a, 22 b}$, J. Albert ${ }^{169}$, S. Albrand ${ }^{57}$, M.J. Alconada Verzini ${ }^{73}$, M. Aleksa ${ }^{32}$, I.N. Aleksandrov ${ }^{67}$, C. Alexa ${ }^{28 b}$, G. Alexander ${ }^{154}$, T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{114}$, M. Aliev ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$, G. Alimonti ${ }^{93 a}$, J. Alison ${ }^{33}$, S.P. Alkire ${ }^{37}$, B.M.M. Allbrooke ${ }^{150}$, B.W. Allen ${ }^{117}$, P.P. Allport ${ }^{19}$,
A. Aloisio ${ }^{105 a, 105 b}$, A. Alonso ${ }^{38}$, F. Alonso ${ }^{73}$, C. Alpigiani ${ }^{139}$, M. Alstaty ${ }^{87}$, B. Alvarez Gonzalez ${ }^{32}$,
D. Álvarez Piqueras ${ }^{167}$, M.G. Alviggi ${ }^{105 a, 105 b}$, B.T. Amadio ${ }^{16}$, K. Amako ${ }^{68}$, Y. Amaral Coutinho ${ }^{26 a}$, C. Amelung ${ }^{25}$, D. Amidei ${ }^{91}$, S.P. Amor Dos Santos ${ }^{127 \mathrm{a}, 127 \mathrm{c}}$, A. Amorim ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, S. Amoroso ${ }^{32}$, G. Amundsen ${ }^{25}$, C. Anastopoulos ${ }^{140}$, L.S. Ancu ${ }^{51}$, N. Andari ${ }^{109}$, T. Andeen ${ }^{11}$, C.F. Anders ${ }^{60 \mathrm{~b}}$, G. Anders ${ }^{32}$, J.K. Anders ${ }^{76}$, K.J. Anderson ${ }^{33}$, A. Andreazza ${ }^{93 a, 93 b}$, V. Andrei ${ }^{60 \mathrm{a}}$, S. Angelidakis ${ }^{9}$, I. Angelozzi ${ }^{108}$, P. Anger ${ }^{46}$, A. Angerami ${ }^{37}$, F. Anghinolfi ${ }^{32}$, A.V. Anisenkov ${ }^{110, c}$, N. Anjos ${ }^{13}$, A. Annovi ${ }^{125 a, 125 b}$, M. Antonelli ${ }^{49}$, A. Antonov ${ }^{99}$, F. Anulli ${ }^{133 a}$, M. Aoki ${ }^{68}$, L. Aperio Bella ${ }^{19}$, G. Arabidze ${ }^{92}$, Y. Arai ${ }^{68}$, J.P. Araque ${ }^{127 a}$, A.T.H. Arce ${ }^{47}$, F.A. Arduh ${ }^{73}$, J-F. Arguin ${ }^{96}$, S. Argyropoulos ${ }^{65}$, M. Arik ${ }^{20 a}$, A.J. Armbruster ${ }^{144}$, L.J. Armitage ${ }^{78}$, O. Arnaez ${ }^{32}$, H. Arnold ${ }^{50}$, M. Arratia ${ }^{30}$, O. Arslan ${ }^{23}$, A. Artamonov ${ }^{98}$, G. Artoni ${ }^{121}$, S. Artz ${ }^{85}$, S. Asai ${ }^{156}$, N. Asbah ${ }^{44}$, A. Ashkenazi ${ }^{154}$, B. Åsman ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, L. Asquith ${ }^{150}$, K. Assamagan ${ }^{27}$, R. Astalos ${ }^{145 \mathrm{a}}$, M. Atkinson ${ }^{166}$, N.B. Atlay ${ }^{142}$, K. Augsten ${ }^{129}$, G. Avolio ${ }^{32}$, B. Axen ${ }^{16}$, M.K. Ayoub ${ }^{118}$, G. Azuelos ${ }^{96, d}$, M.A. Baak ${ }^{32}$, A.E. Baas ${ }^{60 a}$, M.J. Baca ${ }^{19}$, H. Bachacou ${ }^{137}$, K. Bachas ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$, M. Backes ${ }^{32}$, M. Backhaus ${ }^{32}$, P. Bagiacchi ${ }^{133 a, 133 b}$, P. Bagnaia ${ }^{133 a, 133 b}$, Y. Bai ${ }^{35 a}$, J.T. Baines ${ }^{132}$, O.K. Baker ${ }^{176}$, E.M. Baldin ${ }^{110, c}$, P. Balek ${ }^{130}$, T. Balestri ${ }^{149}$, F. Balli ${ }^{137}$, W.K. Balunas ${ }^{123}$, E. Banas ${ }^{41}$, Sw. Banerjee ${ }^{173, e}$, A.A.E. Bannoura ${ }^{175}$, L. Barak 32, E.L. Barberio ${ }^{90}$, D. Barberis ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$, M. Barbero ${ }^{87}$, T. Barillari ${ }^{102}$, T. Barklow ${ }^{144}$, N. Barlow ${ }^{30}$, S.L. Barnes ${ }^{86}$, B.M. Barnett ${ }^{132}$, R.M. Barnett ${ }^{16}$, Z. Barnovska ${ }^{5}$, A. Baroncelli ${ }^{135 \mathrm{a}}$, G. Barone ${ }^{25}$, A.J. Barr ${ }^{121}$, L. Barranco Navarro ${ }^{167}$, F. Barreiro ${ }^{84}$, J. Barreiro Guimarães da Costa ${ }^{35 a}$, R. Bartoldus ${ }^{144}$, A.E. Barton ${ }^{74}$, P. Bartos ${ }^{145 a}$, A. Basalaev ${ }^{124}$, A. Bassalat ${ }^{118}$, R.L. Bates ${ }^{55}$, S.J. Batista ${ }^{159}$, J.R. Batley ${ }^{30}$, M. Battaglia ${ }^{138}$, M. Bauce ${ }^{133 a, 133 b}$, F. Bauer ${ }^{137}$, H.S. Bawa ${ }^{144, f}$, J.B. Beacham ${ }^{112}$, M.D. Beattie ${ }^{74}$, T. Beau ${ }^{82}$, P.H. Beauchemin ${ }^{162}$, P. Bechtle ${ }^{23}$, H.P. Beck ${ }^{18, g}$, K. Becker ${ }^{121}$, M. Becker ${ }^{85}$, M. Beckingham ${ }^{170}$, C. Becot ${ }^{111}$, A.J. Beddall ${ }^{20 e}$, A. Beddall ${ }^{20 \mathrm{~b}}$, V.A. Bednyakov ${ }^{67}$, M. Bedognetti ${ }^{108}$, C.P. Bee ${ }^{149}$, L.J. Beemster ${ }^{108}$, T.A. Beermann ${ }^{32}$, M. Begel ${ }^{27}$, J.K. Behr ${ }^{44}$, C. Belanger-Champagne ${ }^{89}$, A.S. Bell ${ }^{80}$, G. Bella ${ }^{154}$, L. Bellagamba ${ }^{22 \mathrm{a}}$, A. Bellerive ${ }^{31}$, M. Bellomo ${ }^{88}$, K. Belotskiy ${ }^{99}$, O. Beltramello ${ }^{32}$, N.L. Belyaev ${ }^{99}$, O. Benary ${ }^{154}$, D. Benchekroun ${ }^{136 a}$, M. Bender ${ }^{101}$, K. Bendtz ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, N. Benekos ${ }^{10}$, Y. Benhammou ${ }^{154}$, E. Benhar Noccioli ${ }^{176}$, J. Benitez ${ }^{65}$, D.P. Benjamin ${ }^{47}$, J.R. Bensinger ${ }^{25}$, S. Bentvelsen ${ }^{108}$, L. Beresford ${ }^{121}$, M. Beretta ${ }^{49}$, D. Berge ${ }^{108}$, E. Bergeaas Kuutmann ${ }^{165}$, N. Berger ${ }^{5}$, J. Beringer ${ }^{16}$, S. Berlendis ${ }^{57}$, N.R. Bernard ${ }^{88}$, C. Bernius ${ }^{111}$, F.U. Bernlochner ${ }^{23}$, T. Berry ${ }^{79}$, P. Berta ${ }^{130}$, C. Bertella ${ }^{85}$, G. Bertoli ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, F. Bertolucci ${ }^{125 \mathrm{a}, 125 \mathrm{~b}}$, I.A. Bertram ${ }^{74}$, C. Bertsche ${ }^{44}$, D. Bertsche ${ }^{114}$, G.J. Besjes ${ }^{38}$, O. Bessidskaia Bylund ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Bessner ${ }^{44}$, N. Besson ${ }^{137}$, C. Betancourt ${ }^{50}$, S. Bethke ${ }^{102}$, A.J. Bevan 78, W. Bhimji ${ }^{16}$, R.M. Bianchi ${ }^{126}$, L. Bianchini ${ }^{25}$, M. Bianco ${ }^{32}$, O. Biebel ${ }^{101}$, D. Biedermann ${ }^{17}$, R. Bielski ${ }^{86}$, N.V. Biesuz ${ }^{125 a, 125 b}$, M. Biglietti ${ }^{135 a}$, J. Bilbao De Mendizabal ${ }^{51}$, H. Bilokon ${ }^{49}$, M. Bindi ${ }^{56}$, S. Binet ${ }^{118}$, A. Bingul ${ }^{20 b}$, C. Bini ${ }^{133 a, 133 b}$, S. Biondi ${ }^{22 a, 22 b}$, D.M. Bjergaard ${ }^{47}$, C.W. Black ${ }^{151}$, J.E. Black ${ }^{144}$, K.M. Black ${ }^{24}$, D. Blackburn ${ }^{139}$, R.E. Blair ${ }^{6}$, J.-B. Blanchard ${ }^{137}$, J.E. Blanco ${ }^{79}$, T. Blazek ${ }^{145 a}$, I. Bloch ${ }^{44}$, C. Blocker ${ }^{25}$, W. Blum ${ }^{85, *}$, U. Blumenschein ${ }^{56}$, S. Blunier ${ }^{34 \mathrm{a}}$,
G.J. Bobbink ${ }^{108}$, V.S. Bobrovnikov ${ }^{110, c}$, S.S. Bocchetta ${ }^{83}$, A. Bocci ${ }^{47}$, C. Bock 101, M. Boehler ${ }^{50}$, D. Boerner ${ }^{175}$, J.A. Bogaerts ${ }^{32}$, D. Bogavac ${ }^{14}$, A.G. Bogdanchikov ${ }^{110}$, C. Bohm ${ }^{147 a}$, V. Boisvert ${ }^{79}$, P. Bokan ${ }^{14}$, T. Bold ${ }^{40 \mathrm{a}}$, A.S. Boldyrev ${ }^{164 \mathrm{a}, 164 \mathrm{c}}$, M. Bomben ${ }^{82}$, M. Bona ${ }^{78}$, M. Boonekamp ${ }^{137}$, A. Borisov ${ }^{131}$, G. Borissov ${ }^{74}$, J. Bortfeldt ${ }^{101}$, D. Bortoletto ${ }^{121}$, V. Bortolotto ${ }^{62 \mathrm{a}, 62 \mathrm{~b}, 62 \mathrm{c}}$, K. Bos ${ }^{108}$, D. Boscherini ${ }^{22 a}$, M. Bosman ${ }^{13}$, J.D. Bossio Sola ${ }^{29}$, J. Boudreau ${ }^{126}$, J. Bouffard ${ }^{2}$, E.V. Bouhova-Thacker ${ }^{74}$, D. Boumediene ${ }^{36}$, C. Bourdarios ${ }^{118}$, S.K. Boutle ${ }^{55}$, A. Boveia ${ }^{32}$, J. Boyd ${ }^{32}$, I.R. Boyko ${ }^{67}$, J. Bracinik ${ }^{19}$, A. Brandt ${ }^{8}$, G. Brandt ${ }^{56}$, O. Brandt ${ }^{60 \mathrm{a}}$, U. Bratzler ${ }^{157}$, B. Brau ${ }^{88}$, J.E. Brau ${ }^{117}$, H.M. Braun ${ }^{175, *}$, W.D. Breaden Madden ${ }^{55}$, K. Brendlinger ${ }^{123}$, A.J. Brennan ${ }^{90}$, L. Brenner ${ }^{108}$, R. Brenner ${ }^{165}$, S. Bressler ${ }^{172}$, T.M. Bristow ${ }^{48}$, D. Britton ${ }^{55}$, D. Britzger ${ }^{44}$, F.M. Brochu ${ }^{30}$, I. Brock ${ }^{23}$, R. Brock ${ }^{92}$, G. Brooijmans ${ }^{37}$, T. Brooks ${ }^{79}$, W.K. Brooks ${ }^{34 b}$, J. Brosamer ${ }^{16}$, E. Brost ${ }^{117}$, J.H Broughton ${ }^{19}$, P.A. Bruckman de Renstrom ${ }^{41}$, D. Bruncko ${ }^{145 b}$, R. Bruneliere ${ }^{50}$, A. Bruni ${ }^{22 a}$, G. Bruni ${ }^{22 a}$, BH Brunt ${ }^{30}$, M. Bruschi ${ }^{22 \mathrm{a}}$, N. Bruscino ${ }^{23}$, P. Bryant ${ }^{33}$, L. Bryngemark ${ }^{83}$, T. Buanes ${ }^{15}$, Q. Buat ${ }^{143}$, P. Buchholz ${ }^{142}$, A.G. Buckley ${ }^{55}$, I.A. Budagov ${ }^{67}$, F. Buehrer ${ }^{50}$, M.K. Bugge ${ }^{120}$, O. Bulekov ${ }^{99}$, D. Bullock ${ }^{8}$, H. Burckhart ${ }^{32}$, S. Burdin ${ }^{76}$, C.D. Burgard ${ }^{50}$, B. Burghgrave ${ }^{109}$, K. Burka ${ }^{41}$, S. Burke ${ }^{132}$, I. Burmeister ${ }^{45}$, E. Busato ${ }^{36}$, D. Büscher ${ }^{50}$, V. Büscher ${ }^{85}$, P. Bussey ${ }^{55}$, J.M. Butler ${ }^{24}$, C.M. Buttar ${ }^{55}$, J.M. Butterworth ${ }^{80}$, P. Butti ${ }^{108}$, W. Buttinger ${ }^{27}$, A. Buzatu ${ }^{55}$, A.R. Buzykaev ${ }^{110, c}$, S. Cabrera Urbán ${ }^{167}$, D. Caforio ${ }^{129}$, V.M. Cairo ${ }^{39 \mathrm{a}, 39 \mathrm{~b}}$, O. Cakir ${ }^{4 \mathrm{a}}$, N. Calace ${ }^{51}$, P. Calafiura ${ }^{16}$, A. Calandri ${ }^{87}$, G. Calderini ${ }^{82}$, P. Calfayan ${ }^{101}$, L.P. Caloba ${ }^{26 a}$, D. Calvet ${ }^{36}$, S. Calvet ${ }^{36}$, T.P. Calvet ${ }^{87}$, R. Camacho Toro ${ }^{33}$, S. Camarda ${ }^{32}$, P. Camarri ${ }^{134 a, 134 b}$, D. Cameron ${ }^{120}$, R. Caminal Armadans ${ }^{166}$, C. Camincher ${ }^{57}$, S. Campana ${ }^{32}$, M. Campanelli ${ }^{80}$, A. Camplani ${ }^{93 a, 93 b}$, A. Campoverde ${ }^{149}$, V. Canale ${ }^{105 \mathrm{a}, 105 \mathrm{~b}}$, A. Canepa ${ }^{160 \mathrm{a}}$, M. Cano Bret ${ }^{35 \mathrm{e}}$, J. Cantero ${ }^{115}$, R. Cantrill ${ }^{127 \mathrm{a}}$, T. Cao ${ }^{42}$, M.D.M. Capeans Garrido ${ }^{32}$, I. Caprini ${ }^{28 b}$, M. Caprini ${ }^{28 b}$, M. Capua ${ }^{39 a, 39 b}$, R. Caputo ${ }^{85}$, R.M. Carbone ${ }^{37}$, R. Cardarelli ${ }^{134 a}$, F. Cardillo ${ }^{50}$, I. Carli ${ }^{130}$, T. Carli ${ }^{32}$, G. Carlino ${ }^{105 a}$, L. Carminati ${ }^{93 a}$, 93 b , S. Caron ${ }^{107}$, E. Carquin ${ }^{34 b}$, G.D. Carrillo-Montoya ${ }^{32}$, J.R. Carter ${ }^{30}$, J. Carvalho ${ }^{127 \mathrm{a}, 127 \mathrm{c}}$, D. Casadei ${ }^{19}$, M.P. Casado ${ }^{13, h}$, M. Casolino ${ }^{13}$, D.W. Casper ${ }^{163}$, E. Castaneda-Miranda ${ }^{146 a}$, R. Castelijn ${ }^{108}$, A. Castelli ${ }^{108}$, V. Castillo Gimenez ${ }^{167}$, N.F. Castro ${ }^{127 a, i}$, A. Catinaccio ${ }^{32}$, J.R. Catmore ${ }^{120}$, A. Cattai ${ }^{32}$, J. Caudron ${ }^{85}$, V. Cavaliere ${ }^{166}$, E. Cavallaro ${ }^{13}$, D. Cavalli ${ }^{93 a}$, M. Cavalli-Sforza ${ }^{13}$, V. Cavasinni ${ }^{125 a, 125 b}$, F. Ceradini ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, L. Cerda Alberich ${ }^{167}$, B.C. Cerio ${ }^{47}$, A.S. Cerqueira ${ }^{26 b}$, A. Cerri ${ }^{150}$, L. Cerrito ${ }^{78}$, F. Cerutti ${ }^{16}$, M. Cerv ${ }^{32}$, A. Cervelli ${ }^{18}$, S.A. Cetin ${ }^{20 \mathrm{~d}}$, A. Chafaq ${ }^{136 \mathrm{a}}$, D. Chakraborty ${ }^{109}$, S.K. Chan ${ }^{59}$, Y.L. Chan ${ }^{62 \mathrm{a}}$, P. Chang ${ }^{166}$, J.D. Chapman ${ }^{30}$, D.G. Charlton ${ }^{19}$, A. Chatterjee ${ }^{51}$, C.C. Chau ${ }^{159}$, C.A. Chavez Barajas ${ }^{150}$, S. Che ${ }^{112}$, S. Cheatham ${ }^{74}$, A. Chegwidden ${ }^{92}$, S. Chekanov ${ }^{6}$, S.V. Chekulaev ${ }^{160 \mathrm{a}}$, G.A. Chelkov ${ }^{67, j}$, M.A. Chelstowska ${ }^{91}$, C. Chen ${ }^{66}$, H. Chen ${ }^{27}$, K. Chen ${ }^{149}$, S. Chen ${ }^{35 \mathrm{c}}$, S. Chen ${ }^{156}$, X. Chen ${ }^{35 f}$, Y. Chen ${ }^{69}$, H.C. Cheng ${ }^{91}$, H.J Cheng ${ }^{35 \mathrm{a}}$, Y. Cheng ${ }^{33}$, A. Cheplakov ${ }^{67}$, E. Cheremushkina ${ }^{131}$, R. Cherkaoui El Moursli ${ }^{136 e}$, V. Chernyatin ${ }^{27, *}$, E. Cheu ${ }^{7}$, L. Chevalier ${ }^{137}$, V. Chiarella ${ }^{49}$, G. Chiarelli ${ }^{125 \mathrm{a}, 125 \mathrm{~b}}$, G. Chiodini ${ }^{75 \mathrm{a}}$, A.S. Chisholm ${ }^{19}$, A. Chitan ${ }^{28 \mathrm{~b}}$, M.V. Chizhov ${ }^{67}$, K. Choi ${ }^{63}$, A.R. Chomont ${ }^{36}$, S. Chouridou ${ }^{9}$, B.K.B. Chow ${ }^{101}$, V. Christodoulou ${ }^{80}$, D. Chromek-Burckhart ${ }^{32}$, J. Chudoba ${ }^{128}$, A.J. Chuinard ${ }^{89}$, J.J. Chwastowski ${ }^{41}$, L. Chytka ${ }^{116}$, G. Ciapetti ${ }^{133 a, 133 b}$, A.K. Ciftci ${ }^{4 a}$, D. Cinca ${ }^{55}$, V. Cindro ${ }^{77}$, I.A. Cioara ${ }^{23}$, A. Ciocio ${ }^{16}$, F. Cirotto ${ }^{105 a}$, 105b , Z.H. Citron ${ }^{172}$, M. Citterio ${ }^{93 a}$, M. Ciubancan ${ }^{28 b}$, A. Clark ${ }^{51}$, B.L. Clark ${ }^{59}$, M.R. Clark ${ }^{37}$, P.J. Clark ${ }^{48}$, R.N. Clarke ${ }^{16}$, C. Clement ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, Y. Coadou ${ }^{87}$, M. Cobal ${ }^{164 \mathrm{a}, 164 \mathrm{c}}$, A. Coccaro ${ }^{51}$, J. Cochran ${ }^{66}$, L. Coffey ${ }^{25}$, L. Colasurdo ${ }^{107}$, B. Cole ${ }^{37}$, A.P. Colijn ${ }^{108}$, J. Collot ${ }^{57}$, T. Colombo ${ }^{32}$, G. Compostella ${ }^{102}$, P. Conde Muiño ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, E. Coniavitis ${ }^{50}$, S.H. Connell ${ }^{146 \mathrm{~b}}$, I.A. Connelly ${ }^{79}$, V. Consorti ${ }^{50}$, S. Constantinescu ${ }^{28 \mathrm{~b}}$, G. Conti ${ }^{32}$, F. Conventi ${ }^{105 \mathrm{a}, k}$, M. Cooke ${ }^{16}$, B.D. Cooper ${ }^{80}$, A.M. Cooper-Sarkar ${ }^{121}$, K.J.R. Cormier ${ }^{159}$, T. Cornelissen ${ }^{175}$, M. Corradi ${ }^{133 a, 133 b}$, F. Corriveau ${ }^{89, l}$, A. Corso-Radu ${ }^{163}$, A. Cortes-Gonzalez ${ }^{13}$, G. Cortiana ${ }^{102}$, G. Costa $^{93 a}$, M.J. Costa ${ }^{167}$, D. Costanzo ${ }^{140}$, G. Cottin ${ }^{30}$, G. Cowan ${ }^{79}$, B.E. Cox ${ }^{86}$, K. Cranmer ${ }^{111}$, S.J. Crawley ${ }^{55}$, G. Cree ${ }^{31}$, S. Crépé-Renaudin ${ }^{57}$, F. Crescioli ${ }^{82}$, W.A. Cribbs ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Crispin Ortuzar ${ }^{121}$, M. Cristinziani ${ }^{23}$, V. Croft ${ }^{107}$, G. Crosetti ${ }^{39 \mathrm{a}, 39 \mathrm{~b}}$,
T. Cuhadar Donszelmann ${ }^{140}$, J. Cummings ${ }^{176}$, M. Curatolo ${ }^{49}$, J. Cúth ${ }^{85}$, C. Cuthbert ${ }^{151}$, H. Czirr ${ }^{142}$, P. Czodrowski ${ }^{3}$, G. D'amen ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$, S. D’Auria ${ }^{55}$, M. D'Onofrio ${ }^{76}$,
M.J. Da Cunha Sargedas De Sousa ${ }^{127 a, 127 b}$, C. Da Via ${ }^{86}$, W. Dabrowski ${ }^{40 a}$, T. Dado ${ }^{145 a}$, T. Dai ${ }^{91}$, O. Dale ${ }^{15}$, F. Dallaire ${ }^{96}$, C. Dallapiccola ${ }^{88}$, M. Dam ${ }^{38}$, J.R. Dandoy ${ }^{33}$, N.P. Dang ${ }^{50}$, A.C. Daniells ${ }^{19}$, N.S. Dann ${ }^{86}$, M. Danninger ${ }^{168}$, M. Dano Hoffmann ${ }^{137}$, V. Dao ${ }^{50}$, G. Darbo ${ }^{52 a}$, S. Darmora ${ }^{8}$, J. Dassoulas ${ }^{3}$, A. Dattagupta ${ }^{63}$, W. Davey ${ }^{23}$, C. David ${ }^{169}$, T. Davidek ${ }^{130}$, M. Davies ${ }^{154}$, P. Davison ${ }^{80}$, E. Dawe ${ }^{90}$, I. Dawson ${ }^{140}$, R.K. Daya-Ishmukhametova ${ }^{88}$, K. De ${ }^{8}$, R. de Asmundis ${ }^{105 a}$,
A. De Benedetti ${ }^{114}$, S. De Castro ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$, S. De Cecco ${ }^{82}$, N. De Groot ${ }^{107}$, P. de Jong ${ }^{108}$, H. De la Torre ${ }^{84}$, F. De Lorenzi ${ }^{66}$, A. De Maria ${ }^{56}$, D. De Pedis ${ }^{133 a}$, A. De Salvo ${ }^{133 a}$, U. De Sanctis ${ }^{150}$, A. De Santo ${ }^{150}$, J.B. De Vivie De Regie ${ }^{118}$, W.J. Dearnaley ${ }^{74}$, R. Debbe ${ }^{27}$, C. Debenedetti ${ }^{138}$, D.V. Dedovich ${ }^{67}$, N. Dehghanian ${ }^{3}$, I. Deigaard ${ }^{108}$, M. Del Gaudio ${ }^{39 a, 39 b}$, J. Del Peso ${ }^{84}$, T. Del Prete ${ }^{125 a, 125 b}$, D. Delgove ${ }^{118}$, F. Deliot ${ }^{137}$, C.M. Delitzsch ${ }^{51}$, M. Deliyergiyev ${ }^{77}$, A. Dell'Acqua ${ }^{32}$, L. Dell'Asta ${ }^{24}$, M. Dell'Orso ${ }^{125 a, 125 b}$, M. Della Pietra ${ }^{105 a, k}$, D. della Volpe ${ }^{51}$, M. Delmastro ${ }^{5}$, P.A. Delsart ${ }^{57}$,
C. Deluca ${ }^{108}$, D.A. DeMarco ${ }^{159}$, S. Demers ${ }^{176}$, M. Demichev ${ }^{67}$, A. Demilly ${ }^{82}$, S.P. Denisov ${ }^{131}$, D. Denysiuk ${ }^{137}$, D. Derendarz ${ }^{41}$, J.E. Derkaoui ${ }^{136 d}$, F. Derue ${ }^{82}$, P. Dervan ${ }^{76}$, K. Desch ${ }^{23}$, C. Deterre ${ }^{44}$, K. Dette ${ }^{45}$, P.O. Deviveiros ${ }^{32}$, A. Dewhurst ${ }^{132}$, S. Dhaliwal ${ }^{25}$, A. Di Ciaccio ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, L. Di Ciaccio ${ }^{5}$, W.K. Di Clemente ${ }^{123}$, C. Di Donato ${ }^{133 a, 133 b}$, A. Di Girolamo ${ }^{32}$, B. Di Girolamo ${ }^{32}$, B. Di Micco ${ }^{135 a, 135 b}$, R. Di Nardo ${ }^{32}$, A. Di Simone ${ }^{50}$, R. Di Sipio ${ }^{159}$, D. Di Valentino ${ }^{31}$, C. Diaconu ${ }^{87}$, M. Diamond ${ }^{159}$, F.A. Dias ${ }^{48}$, M.A. Diaz ${ }^{34 a}$, E.B. Diehl ${ }^{91}$, J. Dietrich ${ }^{17}$, S. Diglio ${ }^{87}$, A. Dimitrievska ${ }^{14}$, J. Dingfelder ${ }^{23}$, P. Dita ${ }^{28 b}$, S. Dita ${ }^{28 b}$, F. Dittus ${ }^{32}$, F. Djama ${ }^{87}$, T. Djobava ${ }^{53 b}$, J.I. Djuvsland ${ }^{60 \mathrm{a}}$, M.A.B. do Vale ${ }^{26 \mathrm{c}}$, D. Dobos ${ }^{32}$, M. Dobre ${ }^{28 b}$, C. Doglioni ${ }^{83}$, T. Dohmae ${ }^{156}$, J. Dolejsi ${ }^{130}$, Z. Dolezal ${ }^{130}$, B.A. Dolgoshein ${ }^{99, *}$, M. Donadelli ${ }^{26 \mathrm{~d}}$, S. Donati ${ }^{125 \mathrm{a}, 125 \mathrm{~b}}$, P. Dondero ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, J. Donini ${ }^{36}$, J. Dopke ${ }^{132}$, A. Doria ${ }^{105 a}$, M.T. Dova ${ }^{73}$, A.T. Doyle ${ }^{55}$, E. Drechsler ${ }^{56}$, M. Dris ${ }^{10}$, Y. Du ${ }^{35 \mathrm{~d}}$, J. Duarte-Campderros ${ }^{154}$, E. Duchovni ${ }^{172}$, G. Duckeck ${ }^{101}$, O.A. Ducu ${ }^{96, m}$, D. Duda ${ }^{108}$, A. Dudarev ${ }^{32}$, E.M. Duffield ${ }^{16}$, L. Duflot ${ }^{118}$, L. Duguid ${ }^{79}$, M. Dührssen ${ }^{32}$, M. Dumancic ${ }^{172}$, M. Dunford ${ }^{60 \mathrm{a}}$, H. Duran Yildiz ${ }^{4 a}$, M. Düren ${ }^{54}$, A. Durglishvili ${ }^{53 b}$, D. Duschinger ${ }^{46}$, B. Dutta ${ }^{44}$, M. Dyndal ${ }^{44}$, C. Eckardt ${ }^{44}$, K.M. Ecker ${ }^{102}$, R.C. Edgar ${ }^{91}$, N.C. Edwards ${ }^{48}$, T. Eifert ${ }^{32}$, G. Eigen ${ }^{15}$, K. Einsweiler ${ }^{16}$, T. Ekelof ${ }^{165}$, M. El Kacimi ${ }^{136 c}$, V. Ellajosyula ${ }^{87}$, M. Ellert ${ }^{165}$, S. Elles ${ }^{5}$, F. Ellinghaus ${ }^{175}$, A.A. Elliot ${ }^{169}$, N. Ellis ${ }^{32}$, J. Elmsheuser ${ }^{27}$, M. Elsing ${ }^{32}$, D. Emeliyanov ${ }^{132}$, Y. Enari ${ }^{156}$, O.C. Endner ${ }^{85}$, M. Endo ${ }^{119}$, J.S. Ennis ${ }^{170}$, J. Erdmann ${ }^{45}$, A. Ereditato ${ }^{18}$, G. Ernis ${ }^{175}$, J. Ernst ${ }^{2}$, M. Ernst ${ }^{27}$, S. Errede ${ }^{166}$, E. Ertel ${ }^{85}$, M. Escalier ${ }^{118}$, H. Esch ${ }^{45}$, C. Escobar ${ }^{126}$, B. Esposito ${ }^{49}$, A.I. Etienvre ${ }^{137}$, E. Etzion ${ }^{154}$, H. Evans ${ }^{63}$, A. Ezhilov ${ }^{124}$, F. Fabbri ${ }^{22 a}$,22b, L. Fabbri ${ }^{22 a, 22 b}$, G. Facini ${ }^{33}$, R.M. Fakhrutdinov ${ }^{131}$, S. Falciano ${ }^{133 a}$, R.J. Falla ${ }^{80}$, J. Faltova ${ }^{130}$, Y. Fang ${ }^{35 a}$, M. Fanti ${ }^{93 a, 93 b}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{135 a}$, C. Farina ${ }^{126}$, T. Farooque ${ }^{13}$, S. Farrell ${ }^{16}$, S.M. Farrington ${ }^{170}$, P. Farthouat ${ }^{32}$, F. Fassi ${ }^{136 e}$, P. Fassnacht ${ }^{32}$, D. Fassouliotis ${ }^{9}$, M. Faucci Giannelli ${ }^{79}$, A. Favareto ${ }^{52 a, 52 b}$, W.J. Fawcett ${ }^{121}$, L. Fayard ${ }^{118}$, O.L. Fedin ${ }^{124, n}$, W. Fedorko ${ }^{168}$, S. Feigl ${ }^{120}$, L. Feligioni ${ }^{87}$, C. Feng ${ }^{35 d}$, E.J. Feng ${ }^{32}$, H. Feng ${ }^{91}$, A.B. Fenyuk ${ }^{131}$, L. Feremenga ${ }^{8}$, P. Fernandez Martinez ${ }^{167}$, S. Fernandez Perez ${ }^{13}$, J. Ferrando ${ }^{55}$, A. Ferrari ${ }^{165}$, P. Ferrari ${ }^{108}$, R. Ferrari ${ }^{122 a}$, D.E. Ferreira de Lima ${ }^{60 b}$, A. Ferrer ${ }^{167}$, D. Ferrere ${ }^{51}$, C. Ferretti ${ }^{91}$, A. Ferretto Parodi ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$, F. Fiedler ${ }^{85}$, A. Filipčič ${ }^{77}$, M. Filipuzzi ${ }^{44}$, F. Filthaut ${ }^{107}$, M. Fincke-Keeler ${ }^{169}$, K.D. Finelli ${ }^{151}$, M.C.N. Fiolhais ${ }^{127 a, 127 c}$, L. Fiorini ${ }^{167}$, A. Firan ${ }^{42}$, A. Fischer ${ }^{2}$, C. Fischer ${ }^{13}$, J. Fischer ${ }^{175}$, W.C. Fisher ${ }^{92}$, N. Flaschel ${ }^{44}$, I. Fleck ${ }^{142}$, P. Fleischmann ${ }^{91}$, G.T. Fletcher ${ }^{140}$, R.R.M. Fletcher ${ }^{123}$, T. Flick ${ }^{175}$,
A. Floderus ${ }^{83}$, L.R. Flores Castillo ${ }^{62 \mathrm{a}}$, M.J. Flowerdew ${ }^{102}$, G.T. Forcolin ${ }^{86}$, A. Formica ${ }^{137}$, A. Forti ${ }^{86}$, A.G. Foster ${ }^{19}$, D. Fournier ${ }^{118}$, H. Fox ${ }^{74}$, S. Fracchia ${ }^{13}$, P. Francavilla ${ }^{82}$, M. Franchini ${ }^{22 a, 22 b}$, D. Francis ${ }^{32}$, L. Franconi ${ }^{120}$, M. Franklin ${ }^{59}$, M. Frate ${ }^{163}$, M. Fraternali ${ }^{122 a, 122 b}$, D. Freeborn ${ }^{80}$, S.M. Fressard-Batraneanu ${ }^{32}$, F. Friedrich ${ }^{46}$, D. Froidevaux ${ }^{32}$, J.A. Frost ${ }^{121}$, C. Fukunaga ${ }^{157}$, E. Fullana Torregrosa ${ }^{85}$, T. Fusayasu ${ }^{103}$, J. Fuster ${ }^{167}$, C. Gabaldon ${ }^{57}$, O. Gabizon ${ }^{175}$, A. Gabrielli ${ }^{22 a, 22 b}$, A. Gabrielli ${ }^{16}$, G.P. Gach ${ }^{40 \mathrm{a}}$, S. Gadatsch ${ }^{32}$, S. Gadomski ${ }^{51}$, G. Gagliardi ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$, L.G. Gagnon ${ }^{96}$,
P. Gagnon ${ }^{63}$, C. Galea ${ }^{107}$, B. Galhardo ${ }^{127 \mathrm{a}, 127 \mathrm{c}}$, E.J. Gallas ${ }^{121}$, B.J. Gallop ${ }^{132}$, P. Gallus ${ }^{129}$, G. Galster ${ }^{38}$, K.K. Gan ${ }^{112}$, J. Gao ${ }^{35 b}, 87$, Y. Gao ${ }^{48}$, Y.S. Gao ${ }^{144, f}$, F.M. Garay Walls ${ }^{48}$, C. García ${ }^{167}$, J.E. García Navarro ${ }^{167}$, M. Garcia-Sciveres ${ }^{16}$, R.W. Gardner ${ }^{33}$, N. Garelli ${ }^{144}$, V. Garonne ${ }^{120}$, A. Gascon Bravo ${ }^{44}$, C. Gatti ${ }^{49}$, A. Gaudiello ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$, G. Gaudio ${ }^{122 \mathrm{a}}$, B. Gaur ${ }^{142}$, L. Gauthier ${ }^{96}$, I.L. Gavrilenko ${ }^{97}$, C. Gay ${ }^{168}$, G. Gaycken ${ }^{23}$, E.N. Gazis ${ }^{10}$, Z. Gecse ${ }^{168}$, C.N.P. Gee ${ }^{132}$, Ch. Geich-Gimbel ${ }^{23}$, M. Geisen ${ }^{85}$, M.P. Geisler ${ }^{60 \mathrm{a}}$, C. Gemme ${ }^{52 \mathrm{a}}$, M.H. Genest ${ }^{57}$, C. Geng ${ }^{35 b, o}$, S. Gentile ${ }^{133 a, 133 b}$, S. George ${ }^{79}$, D. Gerbaudo ${ }^{13}$, A. Gershon ${ }^{154}$, S. Ghasemi ${ }^{142}$, H. Ghazlane ${ }^{136 b}$, M. Ghneimat ${ }^{23}$, B. Giacobbe ${ }^{22 \mathrm{a}}$, S. Giagu ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, P. Giannetti ${ }^{125 \mathrm{a}, 125 \mathrm{~b}}$, B. Gibbard ${ }^{27}$, S.M. Gibson ${ }^{79}$, M. Gignac ${ }^{168}$, M. Gilchriese ${ }^{16}$, T.P.S. Gillam ${ }^{30}$, D. Gillberg ${ }^{31}$, G. Gilles ${ }^{175}$, D.M. Gingrich ${ }^{3, d}$, N. Giokaris ${ }^{9}$, M.P. Giordani ${ }^{164 \mathrm{a}, 164 \mathrm{c}}$, F.M. Giorgi ${ }^{22 \mathrm{a}}$, F.M. Giorgi ${ }^{17}$, P.F. Giraud ${ }^{137}$, P. Giromini ${ }^{59}$, D. Giugni ${ }^{93 a}$, F. Giuli ${ }^{121}$, C. Giuliani ${ }^{102}$, M. Giulini ${ }^{60 \mathrm{~b}}$, B.K. Gjelsten ${ }^{120}$, S. Gkaitatzis ${ }^{155}$, I. Gkialas ${ }^{155}$, E.L. Gkougkousis ${ }^{118}$, L.K. Gladilin ${ }^{100}$, C. Glasman ${ }^{84}$, J. Glatzer ${ }^{32}$, P.C.F. Glaysher ${ }^{48}$, A. Glazov ${ }^{44}$, M. Goblirsch-Kolb ${ }^{102}$, J. Godlewski ${ }^{41}$, S. Goldfarb ${ }^{91}$, T. Golling ${ }^{51}$, D. Golubkov ${ }^{131}$,
A. Gomes ${ }^{127 \mathrm{a}, 127 \mathrm{~b}, 127 \mathrm{~d}}$, R. Gonçalo ${ }^{127 \mathrm{a}}$, J. Goncalves Pinto Firmino Da Costa ${ }^{137}$, G. Gonella ${ }^{50}$,
L. Gonella ${ }^{19}$, A. Gongadze ${ }^{67}$, S. González de la Hoz^{167}, G. Gonzalez Parra ${ }^{13}$, S. Gonzalez-Sevilla ${ }^{51}$,
L. Goossens ${ }^{32}$, P.A. Gorbounov ${ }^{98}$, H.A. Gordon ${ }^{27}$, I. Gorelov ${ }^{106}$, B. Gorini ${ }^{32}$, E. Gorini ${ }^{75 a}, 75$ b ,
A. Gorišek ${ }^{77}$, E. Gornicki ${ }^{41}$, A.T. Goshaw ${ }^{47}$, C. Gössling ${ }^{45}$, M.I. Gostkin ${ }^{67}$, C.R. Goudet ${ }^{118}$,
D. Goujdami ${ }^{136 \mathrm{c}}$, A.G. Goussiou ${ }^{139}$, N. Govender ${ }^{146 \mathrm{~b}, p}$, E. Gozani ${ }^{153}$, L. Graber ${ }^{56}$,
I. Grabowska-Bold ${ }^{40 \mathrm{a}}$, P.O.J. Gradin ${ }^{57}$, P. Grafström ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$, J. Gramling ${ }^{51}$, E. Gramstad ${ }^{120}$,
S. Grancagnolo ${ }^{17}$, V. Gratchev ${ }^{124}$, P.M. Gravila ${ }^{28 e}$, H.M. Gray ${ }^{32}$, E. Graziani ${ }^{135 \mathrm{a}}$, Z.D. Greenwood ${ }^{81, q}$, C. Grefe ${ }^{23}$, K. Gregersen ${ }^{80}$, I.M. Gregor ${ }^{44}$, P. Grenier ${ }^{144}$, K. Grevtsov ${ }^{5}$, J. Griffiths ${ }^{8}$, A.A. Grillo ${ }^{138}$, K. Grimm ${ }^{74}$, S. Grinstein ${ }^{13, r}$, Ph. Gris ${ }^{36}$, J.-F. Grivaz ${ }^{118}$, S. Groh ${ }^{85}$, J.P. Grohs ${ }^{46}$, E. Gross ${ }^{172}$, J. Grosse-Knetter ${ }^{56}$, G.C. Grossi ${ }^{81}$, Z.J. Grout ${ }^{150}$, L. Guan ${ }^{91}$, W. Guan ${ }^{173}$, J. Guenther ${ }^{129}$, F. Guescini ${ }^{51}$, D. Guest ${ }^{163}$, O. Gueta ${ }^{154}$, E. Guido ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$, T. Guillemin ${ }^{5}$, S. Guindon ${ }^{2}$, U. Gu ${ }^{55}$, C. Gumpert ${ }^{32}$, J. Guo ${ }^{35 \mathrm{e}}$, Y. Guo ${ }^{35 \mathrm{~b}, o}$, S. Gupta ${ }^{121}$, G. Gustavino ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, P. Gutierrez ${ }^{114}$, N.G. Gutierrez Ortiz ${ }^{80}$, C. Gutschow ${ }^{46}$, C. Guyot ${ }^{137}$, C. Gwenlan ${ }^{121}$, C.B. Gwilliam ${ }^{76}$, A. Haas ${ }^{111}$, C. Haber ${ }^{16}$, H.K. Hadavand ${ }^{8}$, N. Haddad ${ }^{136 e}$, A. Hadef ${ }^{87}$, P. Haefner ${ }^{23}$, S. Hageböck ${ }^{23}$, Z. Hajduk ${ }^{41}$, H. Hakobyan ${ }^{177, *}$, M. Haleem ${ }^{44}$, J. Haley ${ }^{115}$, G. Halladjian ${ }^{92}$, G.D. Hallewell ${ }^{87}$, K. Hamacher ${ }^{175}$, P. Hamal ${ }^{116}$, K. Hamano ${ }^{169}$, A. Hamilton ${ }^{146 a}$, G.N. Hamity ${ }^{140}$, P.G. Hamnett ${ }^{44}$, L. Han ${ }^{35 b}$, K. Hanagaki ${ }^{68, s}$, K. Hanawa ${ }^{156}$, M. Hance ${ }^{138}$, B. Haney ${ }^{123}$, P. Hanke ${ }^{60 a}$, R. Hanna ${ }^{137}$, J.B. Hansen ${ }^{38}$, J.D. Hansen ${ }^{38}$, M.C. Hansen ${ }^{23}$, P.H. Hansen ${ }^{38}$, K. Hara ${ }^{161}$, A.S. Hard ${ }^{173}$, T. Harenberg ${ }^{175}$, F. Hariri ${ }^{118}$, S. Harkusha ${ }^{94}$, R.D. Harrington ${ }^{48}$, P.F. Harrison ${ }^{170}$, F. Hartjes ${ }^{108}$, N.M. Hartmann ${ }^{101}$, M. Hasegawa ${ }^{69}$, Y. Hasegawa ${ }^{141}$, A. Hasib ${ }^{114}$, S. Hassani ${ }^{137}$, S. Haug ${ }^{18}$, R. Hauser ${ }^{92}$, L. Hauswald ${ }^{46}$, M. Havranek ${ }^{128}$, C.M. Hawkes ${ }^{19}$, R.J. Hawkings ${ }^{32}$, D. Hayden ${ }^{92}$, C.P. Hays ${ }^{121}$, J.M. Hays ${ }^{78}$, H.S. Hayward ${ }^{76}$, S.J. Haywood ${ }^{132}$, S.J. Head ${ }^{19}$, T. Heck ${ }^{85}$, V. Hedberg ${ }^{83}$, L. Heelan ${ }^{8}$, S. Heim ${ }^{123}$, T. Heim ${ }^{16}$, B. Heinemann ${ }^{16}$, J.J. Heinrich ${ }^{101}$, L. Heinrich ${ }^{111}$, C. Heinz ${ }^{54}$, J. Hejbal ${ }^{128}$, L. Helary ${ }^{24}$, S. Hellman ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C. Helsens ${ }^{32}$, J. Henderson ${ }^{121}$, R.C.W. Henderson ${ }^{74}$, Y. Heng ${ }^{173}$, S. Henkelmann ${ }^{168}$, A.M. Henriques Correia ${ }^{32}$, S. Henrot-Versille ${ }^{118}$, G.H. Herbert ${ }^{17}$, Y. Hernández Jiménez ${ }^{167}$, G. Herten ${ }^{50}$, R. Hertenberger ${ }^{101}$, L. Hervas ${ }^{32}$, G.G. Hesketh ${ }^{80}$, N.P. Hessey ${ }^{108}$, J.W. Hetherly ${ }^{42}$, R. Hickling ${ }^{78}$, E. Higón-Rodriguez ${ }^{167}$, E. Hill ${ }^{169}$, J.C. Hill ${ }^{30}$, K.H. Hiller ${ }^{44}$, S.J. Hillier ${ }^{19}$, I. Hinchliffe ${ }^{16}$, E. Hines ${ }^{123}$, R.R. Hinman ${ }^{16}$, M. Hirose ${ }^{158}$, D. Hirschbuehl ${ }^{175}$, J. Hobbs ${ }^{149}$, N. Hod ${ }^{160 \mathrm{a}}$, M.C. Hodgkinson ${ }^{140}$, P. Hodgson ${ }^{140}$, A. Hoecker ${ }^{32}$, M.R. Hoeferkamp ${ }^{106}$, F. Hoenig ${ }^{101}$, D. Hohn ${ }^{23}$, T.R. Holmes ${ }^{16}$, M. Homann ${ }^{45}$, T.M. Hong ${ }^{126}$, B.H. Hooberman ${ }^{166}$, W.H. Hopkins ${ }^{117}$, Y. Horii ${ }^{104}$, A.J. Horton ${ }^{143}$, J-Y. Hostachy ${ }^{57}$, S. Hou ${ }^{152}$, A. Hoummada ${ }^{136 a}$, J. Howarth ${ }^{44}$, M. Hrabovsky ${ }^{116}$, I. Hristova ${ }^{17}$, J. Hrivnac ${ }^{118}$, T. Hryn'ova ${ }^{5}$, A. Hrynevich ${ }^{95}$, C. Hsu ${ }^{146 \mathrm{c}}$, P.J. Hsu ${ }^{152, t}$, S.-C. Hsu ${ }^{139}$, D. Hu^{37}, Q. Hu ${ }^{35 \mathrm{~b}}$, Y. Huang ${ }^{44}$, Z. Hubacek ${ }^{129}$, F. Hubaut ${ }^{87}$, F. Huegging ${ }^{23}$, T.B. Huffman ${ }^{121}$, E.W. Hughes ${ }^{37}$, G. Hughes ${ }^{74}$, M. Huhtinen ${ }^{32}$, T.A. Hülsing ${ }^{85}$, P. Huo ${ }^{149}$, N. Huseynov ${ }^{67, b}$, J. Huston ${ }^{92}$, J. Huth ${ }^{59}$, G. Iacobucci ${ }^{51}$,
G. Iakovidis ${ }^{27}$, I. Ibragimov ${ }^{142}$, L. Iconomidou-Fayard ${ }^{118}$, E. Ideal ${ }^{176}$, Z. Idrissi ${ }^{136 e}$, P. Iengo ${ }^{32}$, O. Igonkina ${ }^{108, u}$, T. Iizawa ${ }^{171}$, Y. Ikegami ${ }^{68}$, M. Ikeno ${ }^{68}$, Y. Ilchenko ${ }^{11, v}$, D. Iliadis ${ }^{155}$, N. Ilic ${ }^{144}$, T. Ince ${ }^{102}$, G. Introzzi ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, P. Ioannou ${ }^{9, *}$, M. Iodice ${ }^{135 \mathrm{a}}$, K. Iordanidou ${ }^{37}$, V. Ippolito ${ }^{59}$, M. Ishino ${ }^{70}$, M. Ishitsuka ${ }^{158}$, R. Ishmukhametov ${ }^{112}$, C. Issever ${ }^{121}$, S. Istin ${ }^{20 a}$, F. Ito ${ }^{161}$, J.M. Iturbe Ponce ${ }^{86}$, R. Iuppa ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, W. Iwanski ${ }^{41}$, H. Iwasaki ${ }^{68}$, J.M. Izen ${ }^{43}$, V. Izzo ${ }^{105 \mathrm{a}}$, S. Jabbar ${ }^{3}$, B. Jackson ${ }^{123}$, M. Jackson ${ }^{76}$, P. Jackson ${ }^{1}$, V. Jain ${ }^{2}$, K.B. Jakobi ${ }^{85}$, K. Jakobs ${ }^{50}$, S. Jakobsen ${ }^{32}$, T. Jakoubek ${ }^{128}$, D.O. Jamin ${ }^{115}$, D.K. Jana ${ }^{81}$, E. Jansen ${ }^{80}$, R. Jansky ${ }^{64}$, J. Janssen ${ }^{23}$, M. Janus ${ }^{56}$, G. Jarlskog ${ }^{83}$, N. Javadov ${ }^{67, b}$, T. Javůrek ${ }^{50}$, F. Jeanneau ${ }^{137}$, L. Jeanty ${ }^{16}$, J. Jejelava ${ }^{53 \mathrm{a}, w}$, G.-Y. Jeng ${ }^{151}$, D. Jennens ${ }^{90}$, P. Jenni ${ }^{50, x}$, J. Jentzsch ${ }^{45}$, C. Jeske ${ }^{170}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{173}$, J. Jia ${ }^{149}$, H. Jiang ${ }^{66}$, Y. Jiang ${ }^{35 \mathrm{~b}}$, S. Jiggins ${ }^{80}$, J. Jimenez Pena ${ }^{167}$, S. Jin ${ }^{35 \mathrm{a}}$, A. Jinaru ${ }^{28 \mathrm{~b}}$, O. Jinnouchi ${ }^{158}$, P. Johansson ${ }^{140}$, K.A. Johns ${ }^{7}$, W.J. Johnson ${ }^{139}$, K. Jon-And ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, G. Jones ${ }^{170}$, R.W.L. Jones ${ }^{74}$, S. Jones ${ }^{7}$, T.J. Jones ${ }^{76}$, J. Jongmanns ${ }^{60 \mathrm{a}}$, P.M. Jorge ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, J. Jovicevic ${ }^{160 \mathrm{a}}$, X. Ju ${ }^{173}$, A. Juste Rozas ${ }^{13, r}$, M.K. Köhler ${ }^{172}$, A. Kaczmarska ${ }^{41}$, M. Kado ${ }^{118}$, H. Kagan ${ }^{112}$, M. Kagan ${ }^{144}$, S.J. Kahn ${ }^{87}$, E. Kajomovitz ${ }^{47}$, C.W. Kalderon ${ }^{121}$, A. Kaluza ${ }^{85}$, S. Kama ${ }^{42}$, A. Kamenshchikov ${ }^{131}$, N. Kanaya ${ }^{156}$, S. Kaneti ${ }^{30}$, L. Kanjir ${ }^{77}$, V.A. Kantserov ${ }^{99}$, J. Kanzaki ${ }^{68}$, B. Kaplan ${ }^{111}$, L.S. Kaplan ${ }^{173}$, A. Kapliy ${ }^{33}$, D. Kar ${ }^{146 c}$, K. Karakostas ${ }^{10}$, A. Karamaoun ${ }^{3}$, N. Karastathis ${ }^{10}$, M.J. Kareem ${ }^{56}$, E. Karentzos ${ }^{10}$, M. Karnevskiy ${ }^{85}$, S.N. Karpov ${ }^{67}$, Z.M. Karpova ${ }^{67}$, K. Karthik ${ }^{111}$, V. Kartvelishvili ${ }^{74}$, A.N. Karyukhin ${ }^{131}$, K. Kasahara ${ }^{161}$, L. Kashif ${ }^{173}$, R.D. Kass ${ }^{112}$, A. Kastanas ${ }^{15}$, Y. Kataoka ${ }^{156}$, C. Kato ${ }^{156}$, A. Katre ${ }^{51}$, J. Katzy ${ }^{44}$, K. Kawagoe ${ }^{72}$, T. Kawamoto ${ }^{156}$, G. Kawamura ${ }^{56}$, S. Kazama ${ }^{156}$, V.F. Kazanin ${ }^{110, c}$, R. Keeler ${ }^{169}$, R. Kehoe ${ }^{42}$, J.S. Keller ${ }^{44}$, J.J. Kempster ${ }^{79}$, K Kentaro ${ }^{104}$, H. Keoshkerian ${ }^{159}$, O. Kepka ${ }^{128}$, B.P. Kerševan ${ }^{77}$, S. Kersten ${ }^{175}$, R.A. Keyes ${ }^{89}$, F. Khalil-zada ${ }^{12}$, A. Khanov ${ }^{115}$, A.G. Kharlamov ${ }^{110, c}$, T.J. Khoo ${ }^{51}$, V. Khovanskiy ${ }^{98}$, E. Khramov ${ }^{67}$, J. Khubua ${ }^{53 b}$, , S. Kido ${ }^{69}$, H.Y. Kim ${ }^{8}$, S.H. Kim ${ }^{161}$, Y.K. Kim ${ }^{33}$, N. Kimura ${ }^{155}$, O.M. Kind ${ }^{17}$, B.T. King ${ }^{76}$, M. King ${ }^{167}$, S.B. King ${ }^{168}$, J. Kirk ${ }^{132}$, A.E. Kiryunin ${ }^{102}$, T. Kishimoto ${ }^{69}$, D. Kisielewska ${ }^{40 a}$, F. Kiss ${ }^{50}$, K. Kiuchi ${ }^{161}$, O. Kivernyk ${ }^{137}$, E. Kladiva ${ }^{145 b}$, M.H. Klein ${ }^{37}$, M. Klein ${ }^{76}$, U. Klein ${ }^{76}$, K. Kleinknecht ${ }^{85}$, P. Klimek ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Klimentov ${ }^{27}$, R. Klingenberg ${ }^{45}$, J.A. Klinger ${ }^{140}$, T. Klioutchnikova ${ }^{32}$, E.-E. Kluge ${ }^{60 \mathrm{a}}$, P. Kluit ${ }^{108}$, S. Kluth ${ }^{102}$, J. Knapik ${ }^{41}$, E. Kneringer ${ }^{64}$, E.B.F.G. Knoops ${ }^{87}$, A. Knue ${ }^{55}$, A. Kobayashi ${ }^{156}$, D. Kobayashi ${ }^{158}$, T. Kobayashi ${ }^{156}$, M. Kobel ${ }^{46}$, M. Kocian ${ }^{144}$, P. Kodys ${ }^{130}$, T. Koffas ${ }^{31}$, E. Koffeman ${ }^{108}$, T. Koi ${ }^{144}$, H. Kolanoski ${ }^{17}$, M. Kolb ${ }^{60 \mathrm{~b}}$, I. Koletsou ${ }^{5}$, A.A. Komar ${ }^{97, *}$, Y. Komori ${ }^{156}$, T. Kondo ${ }^{68}$, N. Kondrashova ${ }^{44}$, K. Köneke ${ }^{50}$, A.C. König ${ }^{107}$, T. Kono ${ }^{68, z}$, R. Konoplich ${ }^{111, a a}$, N. Konstantinidis ${ }^{80}$, R. Kopeliansky ${ }^{63}$, S. Koperny ${ }^{40 \mathrm{a}}$, L. Köpke ${ }^{85}$, A.K. Kopp 50, K. Korcyl ${ }^{41}$, K. Kordas ${ }^{155}$, A. Korn ${ }^{80}$, A.A. Korol ${ }^{110, c}$, I. Korolkov ${ }^{13}$, E.V. Korolkova ${ }^{140}$, O. Kortner ${ }^{102}$, S. Kortner ${ }^{102}$, T. Kosek ${ }^{130}$, V.V. Kostyukhin ${ }^{23}$, A. Kotwal ${ }^{47}$, A. Kourkoumeli-Charalampidi ${ }^{155}$, C. Kourkoumelis ${ }^{9}$, V. Kouskoura ${ }^{27}$, A.B. Kowalewska ${ }^{41}$, R. Kowalewski ${ }^{169}$, T.Z. Kowalski ${ }^{40 \mathrm{a}}$, C. Kozakai ${ }^{156}$, W. Kozanecki ${ }^{137}$, A.S. Kozhin ${ }^{131}$, V.A. Kramarenko ${ }^{100}$, G. Kramberger ${ }^{77}$, D. Krasnopevtsev ${ }^{99}$, M.W. Krasny ${ }^{82}$, A. Krasznahorkay ${ }^{32}$, J.K. Kraus ${ }^{23}$, A. Kravchenko ${ }^{27}$, M. Kretz ${ }^{60 c}$, J. Kretzschmar ${ }^{76}$, K. Kreutzfeldt ${ }^{54}$, P. Krieger ${ }^{159}$, K. Krizka ${ }^{33}$, K. Kroeninger ${ }^{45}$, H. Kroha ${ }^{102}$, J. Kroll ${ }^{123}$, J. Kroseberg ${ }^{23}$, J. Krstic ${ }^{14}$, U. Kruchonak ${ }^{67}$, H. Krüger ${ }^{23}$, N. Krumnack ${ }^{66}$, A. Kruse ${ }^{173}$, M.C. Kruse ${ }^{47}$, M. Kruskal ${ }^{24}$, T. Kubota ${ }^{90}$, H. Kucuk ${ }^{80}$, S. Kuday ${ }^{4 b}$, J.T. Kuechler ${ }^{175}$, S. Kuehn ${ }^{50}$, A. Kugel ${ }^{60 \mathrm{c}}$, F. Kuger ${ }^{174}$, A. Kuhl ${ }^{138}$, T. Kuhl ${ }^{44}$, V. Kukhtin ${ }^{67}$, R. Kukla ${ }^{137}$, Y. Kulchitsky ${ }^{94}$, S. Kuleshov ${ }^{34 b}$, M. Kuna ${ }^{133 a, 133 b}$, T. Kunigo ${ }^{70}$, A. Kupco ${ }^{128}$, H. Kurashige ${ }^{69}$, Y.A. Kurochkin ${ }^{94}$, V. Kus ${ }^{128}$, E.S. Kuwertz ${ }^{169}$, M. Kuze ${ }^{158}$, J. Kvita ${ }^{116}$, T. Kwan ${ }^{169}$, D. Kyriazopoulos ${ }^{140}$, A. La Rosa ${ }^{102}$, J.L. La Rosa Navarro ${ }^{26 \mathrm{~d}}$, L. La Rotonda ${ }^{39 \mathrm{a}, 39 \mathrm{~b}}$, C. Lacasta ${ }^{167}$, F. Lacava ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, J. Lacey ${ }^{31}$, H. Lacker ${ }^{17}$, D. Lacour ${ }^{82}$, V.R. Lacuesta ${ }^{167}$, E. Ladygin ${ }^{67}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{82}$, T. Lagouri ${ }^{176}$, S. Lai ${ }^{56}$, S. Lammers ${ }^{63}$, W. Lampl ${ }^{7}$, E. Lançon ${ }^{137}$, U. Landgraf ${ }^{50}$, M.P.J. Landon ${ }^{78}$, V.S. Lang ${ }^{60 a}$, J.C. Lange ${ }^{13}$, A.J. Lankford ${ }^{163}$, F. Lanni ${ }^{27}$, K. Lantzsch ${ }^{23}$, A. Lanza ${ }^{122 a}$, S. Laplace ${ }^{82}$, C. Lapoire ${ }^{32}$, J.F. Laporte ${ }^{137}$, T. Lari ${ }^{93 a}$, F. Lasagni Manghi ${ }^{22 a, 22 b}$, M. Lassnig ${ }^{32}$, P. Laurelli ${ }^{49}$, W. Lavrijsen ${ }^{16}$, A.T. Law ${ }^{138}$, P. Laycock ${ }^{76}$, T. Lazovich ${ }^{59}$, M. Lazzaroni ${ }^{93 a, 93 b}$, B. Le ${ }^{90}$,
O. Le Dortz ${ }^{82}$, E. Le Guirriec ${ }^{87}$, E.P. Le Quilleuc ${ }^{137}$, M. LeBlanc ${ }^{169}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{57}$, C.A. Lee ${ }^{27}$, S.C. Lee ${ }^{152}$, L. Lee ${ }^{1}$, G. Lefebvre ${ }^{82}$, M. Lefebvre ${ }^{169}$, F. Legger ${ }^{101}$, C. Leggett ${ }^{16}$, A. Lehan ${ }^{76}$, G. Lehmann Miotto ${ }^{32}$, X. Lei ${ }^{7}$, W.A. Leight ${ }^{31}$, A. Leisos ${ }^{155, a b}$, A.G. Leister ${ }^{176}$, M.A.L. Leite ${ }^{26 \mathrm{~d}}$, R. Leitner ${ }^{130}$, D. Lellouch ${ }^{172}$, B. Lemmer ${ }^{56}$, K.J.C. Leney ${ }^{80}$, T. Lenz ${ }^{23}$, B. Lenzi ${ }^{32}$, R. Leone ${ }^{7}$, S. Leone ${ }^{125 a, 125 b}$, C. Leonidopoulos ${ }^{48}$, S. Leontsinis ${ }^{10}$, G. Lerner ${ }^{150}$, C. Leroy ${ }^{96}$, A.A.J. Lesage ${ }^{137}$, C.G. Lester ${ }^{30}$, M. Levchenko ${ }^{124}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{91}$, L.J. Levinson ${ }^{172}$, M. Levy ${ }^{19}$, D. Lewis ${ }^{78}$, A.M. Leyko ${ }^{23}$, M. Leyton ${ }^{43}$, B. $\mathrm{Li}^{35 \mathrm{~b}, o}$, H. Li ${ }^{149}$, H.L. Li^{33}, L. Li ${ }^{47}$, L. Li ${ }^{355}$, Q. $\mathrm{Li}^{35 \mathrm{a}}, \mathrm{S} . \mathrm{Li}^{47}, \mathrm{X} . \mathrm{Li}^{86}, \mathrm{Y}^{2} \mathrm{Li}^{142}$, Z. Liang ${ }^{35 \mathrm{a}}$, B. Liberti ${ }^{134 \mathrm{a}}$, A. Liblong ${ }^{159}$, P. Lichard ${ }^{32}$, K. Lie 166, J. Liebal ${ }^{23}$, W. Liebig ${ }^{15}$, A. Limosani ${ }^{151}$, S.C. Lin ${ }^{152, a c}$, T.H. Lin 85, B.E. Lindquist ${ }^{149}$, A.E. Lionti ${ }^{51}$, E. Lipeles ${ }^{123}$, A. Lipniacka ${ }^{15}$, M. Lisovyi ${ }^{60 b}$, T.M. Liss ${ }^{166}$, A. Lister ${ }^{168}$, A.M. Litke ${ }^{138}$, B. Liu ${ }^{152, a d}$, D. Liu ${ }^{152}$, H. Liu ${ }^{91}$, H. Liu ${ }^{27}$, J. Liu ${ }^{87}$, J.B. Liu ${ }^{35 b}$, K. Liu ${ }^{87}$, L. Liu ${ }^{166}$, M. Liu ${ }^{47}$, M. Liu ${ }^{35 b}$, Y.L. Liu ${ }^{35 b}$, Y. Liu ${ }^{35 b}$, M. Livan ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, A. Lleres ${ }^{57}$, J. Llorente Merino ${ }^{35 \mathrm{a}}$, S.L. Lloyd ${ }^{78}$, F. Lo Sterzo ${ }^{152}$, E. Lobodzinska ${ }^{44}$, P. Loch ${ }^{7}$, W.S. Lockman ${ }^{138}$, F.K. Loebinger ${ }^{86}$, A.E. Loevschall-Jensen ${ }^{38}$, K.M. Loew ${ }^{25}$, A. Loginov ${ }^{176}$, T. Lohse ${ }^{17}$, K. Lohwasser ${ }^{44}$, M. Lokajicek ${ }^{128}$, B.A. Long ${ }^{24}$, J.D. Long ${ }^{166}$, R.E. Long ${ }^{74}$, L. Longo ${ }^{75 a, 75 b}$, K.A. Looper ${ }^{112}$, L. Lopes ${ }^{127 a}$, D. Lopez Mateos ${ }^{59}$, B. Lopez Paredes ${ }^{140}$, I. Lopez Paz ${ }^{13}$, A. Lopez Solis ${ }^{82}$, J. Lorenz ${ }^{101}$, N. Lorenzo Martinez ${ }^{63}$, M. Losada ${ }^{21}$, P.J. Lösel ${ }^{101}$, X. Lou ${ }^{35 \mathrm{a}}$, A. Lounis ${ }^{118}$, J. Love ${ }^{6}$, P.A. Love ${ }^{74}$, H. Lu ${ }^{62 \mathrm{a}}$, N. Lu ${ }^{91}$, H.J. Lubatti ${ }^{139}$, C. Luci ${ }^{133 a, 133 b}$, A. Lucotte ${ }^{57}$, C. Luedtke ${ }^{50}$, F. Luehring ${ }^{63}$, W. Lukas ${ }^{64}$, L. Luminari ${ }^{133 a}$, O. Lundberg ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, B. Lund-Jensen ${ }^{148}$, P.M. Luzi ${ }^{82}$, D. Lynn ${ }^{27}$, R. Lysak ${ }^{128}$, E. Lytken ${ }^{83}$, V. Lyubushkin ${ }^{67}$, H. Ma ${ }^{27}$, L.L. $\mathrm{Ma}^{35 \mathrm{~d}}$, Y. Ma ${ }^{35 \mathrm{~d}}$, G. Maccarrone ${ }^{49}$, A. Macchiolo ${ }^{102}$, C.M. Macdonald ${ }^{140}$, B. Maček ${ }^{77}$, J. Machado Miguens ${ }^{123,127 b}$, D. Madaffari ${ }^{87}$, R. Madar ${ }^{36}$, H.J. Maddocks ${ }^{165}$, W.F. Mader ${ }^{46}$, A. Madsen ${ }^{44}$, J. Maeda ${ }^{69}$, S. Maeland ${ }^{15}$, T. Maeno ${ }^{27}$, A. Maevskiy ${ }^{100}$, E. Magradze ${ }^{56}$, J. Mahlstedt ${ }^{108}$, C. Maiani ${ }^{118}$, C. Maidantchik ${ }^{26 a}$, A.A. Maier ${ }^{102}$, T. Maier ${ }^{101}$, A. Maio ${ }^{127 \mathrm{a}, 127 \mathrm{~b}, 127 \mathrm{~d}}$, S. Majewski ${ }^{117}$, Y. Makida ${ }^{68}$, N. Makovec ${ }^{118}$, B. Malaescu ${ }^{82}$, Pa. Malecki ${ }^{41}$, V.P. Maleev ${ }^{124}$, F. Malek ${ }^{57}$, U. Mallik ${ }^{65}$, D. Malon ${ }^{6}$, C. Malone ${ }^{144}$, S. Maltezos ${ }^{10}$, S. Malyukov ${ }^{32}$, J. Mamuzic ${ }^{167}$, G. Mancini ${ }^{49}$, B. Mandelli ${ }^{32}$, L. Mandelli ${ }^{93 \mathrm{a}}$, I. Mandić ${ }^{\text {7 }}$, J. Maneira ${ }^{\text {127a, 127b }}$, L. Manhaes de Andrade Filho ${ }^{26 \mathrm{~b}}$, J. Manjarres Ramos ${ }^{160 b}$, A. Mann ${ }^{101}$, A. Manousos ${ }^{32}$, B. Mansoulie ${ }^{137}$, J.D. Mansour ${ }^{35 \mathrm{a}}$, R. Mantifel ${ }^{89}$, M. Mantoani ${ }^{56}$, S. Manzoni ${ }^{93 a, 93 b}$, L. Mapelli ${ }^{32}$, G. Marceca ${ }^{29}$, L. March ${ }^{51}$, G. Marchiori ${ }^{82}$, M. Marcisovsky ${ }^{128}$, M. Marjanovic ${ }^{14}$, D.E. Marley ${ }^{91}$, F. Marroquim ${ }^{26 a}$, S.P. Marsden ${ }^{86}$, Z. Marshall ${ }^{16}$, S. Marti-Garcia ${ }^{167}$, B. Martin ${ }^{92}$, T.A. Martin ${ }^{170}$, V.J. Martin ${ }^{48}$, B. Martin dit Latour ${ }^{15}$, M. Martinez ${ }^{13, r}$, S. Martin-Haugh ${ }^{132}$, V.S. Martoiu ${ }^{28 b}$, A.C. Martyniuk ${ }^{80}$, M. Marx ${ }^{139}$, A. Marzin ${ }^{32}$, L. Masetti ${ }^{85}$, T. Mashimo ${ }^{156}$, R. Mashinistov ${ }^{97}$, J. Masik ${ }^{86}$, A.L. Maslennikov ${ }^{110, c}$, I. Massa ${ }^{22 a, 22 b}$, L. Massa ${ }^{22 a, 22 b}$, P. Mastrandrea ${ }^{5}$, A. Mastroberardino ${ }^{39 \mathrm{a}, 39 \mathrm{~b}}$, T. Masubuchi ${ }^{156}$, P. Mättig ${ }^{175}$, J. Mattmann ${ }^{85}$, J. Maurer ${ }^{28 \mathrm{~b}}$, S.J. Maxfield ${ }^{76}$, D.A. Maximov ${ }^{110, c}$, R. Mazini ${ }^{152}$, S.M. Mazza ${ }^{93 a, 93 b}$, N.C. Mc Fadden ${ }^{106}$, G. Mc Goldrick ${ }^{159}$, S.P. Mc Kee ${ }^{91}$, A. McCarn ${ }^{91}$, R.L. McCarthy ${ }^{149}$, T.G. McCarthy ${ }^{102}$, L.I. McClymont ${ }^{80}$, E.F. McDonald ${ }^{90}$, K.W. McFarlane ${ }^{58, *}$, J.A. Mcfayden ${ }^{80}$, G. Mchedlidze ${ }^{56}$, S.J. McMahon ${ }^{132}$, R.A. McPherson ${ }^{169, l}$, M. Medinnis ${ }^{44}$, S. Meehan ${ }^{139}$, S. Mehlhase ${ }^{101}$, A. Mehta ${ }^{76}$, K. Meier ${ }^{60 \mathrm{a}}$, C. Meineck ${ }^{101}$, B. Meirose ${ }^{43}$, D. Melini ${ }^{167}$, B.R. Mellado Garcia ${ }^{146 c}$, M. Melo ${ }^{145 \mathrm{a}}$, F. Meloni ${ }^{18}$, A. Mengarelli ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$, S. Menke ${ }^{102}$, E. Meoni ${ }^{162}$, S. Mergelmeyer ${ }^{17}$, P. Mermod ${ }^{51}$, L. Merola ${ }^{105 a, 105 b}$, C. Meroni ${ }^{93 a}$, F.S. Merritt ${ }^{33}$, A. Messina ${ }^{133 a, 133 b}$, J. Metcalfe ${ }^{6}$, A.S. Mete ${ }^{163}$, C. Meyer ${ }^{85}$, C. Meyer ${ }^{123}$, J-P. Meyer ${ }^{137}$, J. Meyer ${ }^{108}$, H. Meyer Zu Theenhausen ${ }^{60 \text { a }}$, F. Miano ${ }^{150}$, R.P. Middleton ${ }^{132}$, S. Miglioranzi ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$, L. Mijović ${ }^{23}$, G. Mikenberg ${ }^{172}$, M. Mikestikova ${ }^{128}$, M. Mikuž ${ }^{77}$, M. Milesi ${ }^{90}$, A. Milic ${ }^{64}$, D.W. Miller ${ }^{33}$, C. Mills ${ }^{48}$, A. Milov ${ }^{172}$, D.A. Milstead ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A.A. Minaenko ${ }^{131}$, Y. Minami ${ }^{156}$, I.A. Minashvili ${ }^{67}$, A.I. Mincer ${ }^{111}$, B. Mindur ${ }^{40 a}$, M. Mineev ${ }^{67}$, Y. Ming ${ }^{173}$, L.M. Mir ${ }^{13}$, K.P. Mistry ${ }^{123}$, T. Mitani ${ }^{171}$, J. Mitrevski ${ }^{101}$, V.A. Mitsou ${ }^{167}$, A. Miucci ${ }^{51}$, P.S. Miyagawa ${ }^{140}$, J.U. Mjörnmark ${ }^{83}$, T. Moa ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, K. Mochizuki ${ }^{96}$, S. Mohapatra ${ }^{37}$, S. Molander ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, R. Moles-Valls ${ }^{23}$, R. Monden ${ }^{70}$, M.C. Mondragon ${ }^{92}$, K. Mönig ${ }^{44}$, J. Monk ${ }^{38}$,
E. Monnier ${ }^{87}$, A. Montalbano ${ }^{149}$, J. Montejo Berlingen ${ }^{32}$, F. Monticelli ${ }^{73}$, S. Monzani ${ }^{93 a}$, 93 b , R.W. Moore ${ }^{3}$, N. Morange ${ }^{118}$, D. Moreno ${ }^{21}$, M. Moreno Llácer ${ }^{56}$, P. Morettini ${ }^{52 a}$, D. Mori ${ }^{143}$, T. Mori ${ }^{156}$, M. Morii ${ }^{59}$, M. Morinaga ${ }^{156}$, V. Morisbak ${ }^{120}$, S. Moritz ${ }^{85}$, A.K. Morley ${ }^{151}$, G. Mornacchi ${ }^{32}$, J.D. Morris ${ }^{78}$, S.S. Mortensen ${ }^{38}$, L. Morvaj ${ }^{149}$, M. Mosidze ${ }^{53 \mathrm{~b}}$, J. Moss ${ }^{144}$, K. Motohashi ${ }^{158}$, R. Mount ${ }^{144}$, E. Mountricha ${ }^{27}$, S.V. Mouraviev ${ }^{97, *}$, E.J.W. Moyse ${ }^{88}$, S. Muanza ${ }^{87}$, R.D. Mudd ${ }^{19}$, F. Mueller ${ }^{102}$, J. Mueller ${ }^{126}$, R.S.P. Mueller ${ }^{101}$, T. Mueller ${ }^{30}$, D. Muenstermann ${ }^{74}$, P. Mullen ${ }^{55}$, G.A. Mullier ${ }^{18}$, F.J. Munoz Sanchez ${ }^{86}$, J.A. Murillo Quijada ${ }^{19}$, W.J. Murray ${ }^{170,132}$, H. Musheghyan ${ }^{56}$, M. Muškinja ${ }^{77}$, A.G. Myagkov ${ }^{131, a e}$, M. Myska ${ }^{129}$, B.P. Nachman ${ }^{144}$, O. Nackenhorst ${ }^{51}$, K. Nagai ${ }^{121}$, R. Nagai ${ }^{68, z}$, K. Nagano ${ }^{68}$, Y. Nagasaka ${ }^{61}$, K. Nagata ${ }^{161}$, M. Nagel ${ }^{50}$, E. Nagy ${ }^{87}$, A.M. Nairz ${ }^{32}$, Y. Nakahama ${ }^{32}$, K. Nakamura ${ }^{68}$, T. Nakamura ${ }^{156}$, I. Nakano ${ }^{113}$, H. Namasivayam ${ }^{43}$, R.F. Naranjo Garcia ${ }^{44}$, R. Narayan ${ }^{11}$, D.I. Narrias Villar ${ }^{60 \mathrm{a}}$, I. Naryshkin ${ }^{124}$, T. Naumann ${ }^{44}$, G. Navarro ${ }^{21}$, R. Nayyar ${ }^{7}$, H.A. Neal ${ }^{91}$, P.Yu. Nechaeva ${ }^{97}$, T.J. Neep ${ }^{86}$, P.D. Nef 144, A. Negri ${ }^{122 a, 122 b}$, M. Negrini ${ }^{22 a}$, S. Nektarijevic ${ }^{107}$, C. Nellist ${ }^{118}$, A. Nelson ${ }^{163}$, S. Nemecek ${ }^{128}$, P. Nemethy ${ }^{111}$, A.A. Nepomuceno ${ }^{26 a}$, M. Nessi ${ }^{32, a f}$, M.S. Neubauer ${ }^{166}$, M. Neumann ${ }^{175}$, R.M. Neves ${ }^{111}$, P. Nevski ${ }^{27}$, P.R. Newman ${ }^{19}$, D.H. Nguyen ${ }^{6}$, T. Nguyen Manh ${ }^{96}$, R.B. Nickerson ${ }^{121}$, R. Nicolaidou ${ }^{137}$, J. Nielsen ${ }^{138}$, A. Nikiforov ${ }^{17}$, V. Nikolaenko ${ }^{131, a e}$, I. Nikolic-Audit ${ }^{82}$, K. Nikolopoulos ${ }^{19}$, J.K. Nilsen ${ }^{120}$, P. Nilsson ${ }^{27}$, Y. Ninomiya ${ }^{156}$, A. Nisat ${ }^{133 a}$, R. Nisius ${ }^{102}$, T. Nobe ${ }^{156}$, L. Nodulman ${ }^{6}$, M. Nomachi ${ }^{119}$, I. Nomidis ${ }^{31}$, T. Nooney ${ }^{78}$, S. Norberg ${ }^{114}$, M. Nordberg ${ }^{32}$, N. Norjoharuddeen ${ }^{121}$, O. Novgorodova ${ }^{46}$, S. Nowak ${ }^{102}$, M. Nozaki ${ }^{68}$, L. Nozka ${ }^{116}$, K. Ntekas ${ }^{10}$, E. Nurse ${ }^{80}$, F. Nuti ${ }^{90}$, F. O’ grady ${ }^{7}$, D.C. O’Neil ${ }^{143}$, A.A. O'Rourke ${ }^{44}$, V. O'Shea ${ }^{55}$, F.G. Oakham ${ }^{31, d}$, H. Oberlack ${ }^{102}$, T. Obermann ${ }^{23}$, J. Ocariz ${ }^{82}$, A. Ochi ${ }^{69}$, I. Ochoa ${ }^{37}$, J.P. Ochoa-Ricoux ${ }^{34 \mathrm{a}}$, S. Oda ${ }^{72}$, S. Odaka ${ }^{68}$, H. Ogren ${ }^{63}$, A. Oh ${ }^{86}$, S.H. Oh ${ }^{47}$, C.C. Ohm ${ }^{16}$, H. Ohman ${ }^{165}$, H. Oide ${ }^{32}$, H. Okawa ${ }^{161}$, Y. Okumura ${ }^{33}$, T. Okuyama ${ }^{68}$, A. Olariu ${ }^{28 \mathrm{~b}}$, L.F. Oleiro Seabra ${ }^{127 \mathrm{a}}$, S.A. Olivares Pino ${ }^{48}$, D. Oliveira Damazio ${ }^{27}$, A. Olszewski ${ }^{41}$, J. Olszowska ${ }^{41}$, A. Onofre ${ }^{127 a, 127 e}$, K. Onogi ${ }^{104}$, P.U.E. Onyisi ${ }^{11, v}$, M.J. Oreglia ${ }^{33}$, Y. Oren ${ }^{154}$, D. Orestano ${ }^{135 a, 135 b}$, N. Orlando ${ }^{62 \mathrm{~b}}$, R.S. Orr ${ }^{159}$, B. Osculati ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$, R. Ospanov ${ }^{86}$, G. Otero y Garzon ${ }^{29}$, H. Otono ${ }^{72}$, M. Ouchrif ${ }^{136 d}$, F. Ould-Saada ${ }^{120}$, A. Ouraou ${ }^{137}$, K.P. Oussoren ${ }^{108}$, Q. Ouyang ${ }^{35 a}$, M. Owen ${ }^{55}$, R.E. Owen ${ }^{19}$, V.E. Ozcan ${ }^{20 a}$, N. Ozturk ${ }^{8}$, K. Pachal ${ }^{143}$, A. Pacheco Pages ${ }^{13}$, C. Padilla Aranda ${ }^{13}$, M. Pagáčová ${ }^{50}$, S. Pagan Griso ${ }^{16}$, F. Paige ${ }^{27}$, P. Pais ${ }^{88}$, K. Pajchel ${ }^{120}$, G. Palacino ${ }^{160 \mathrm{~b}}$, S. Palestini ${ }^{32}$, M. Palka ${ }^{40 \mathrm{~b}}$, D. Pallin ${ }^{36}$, A. Palma ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, E.St. Panagiotopoulou ${ }^{10}$, C.E. Pandini ${ }^{82}$, J.G. Panduro Vazquez ${ }^{79}$, P. Pani ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, S. Panitkin ${ }^{27}$, D. Pantea ${ }^{28 \mathrm{~b}}$, L. Paolozzi ${ }^{51}$,

Th.D. Papadopoulou ${ }^{10}$, K. Papageorgiou ${ }^{155}$, A. Paramonov ${ }^{6}$, D. Paredes Hernandez ${ }^{176}$, A.J. Parker ${ }^{74}$, M.A. Parker ${ }^{30}$, K.A. Parker ${ }^{140}$, F. Parodi ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$, J.A. Parsons ${ }^{37}$, U. Parzefall ${ }^{50}$, V.R. Pascuzzi ${ }^{159}$, E. Pasqualucci ${ }^{133 a}$, S. Passaggio ${ }^{52 a}$, Fr. Pastore ${ }^{79}$, G. Pásztor ${ }^{31, a g}$, S. Pataraia ${ }^{175}$, J.R. Pater ${ }^{86}$, T. Pauly ${ }^{32}$, J. Pearce ${ }^{169}$, B. Pearson ${ }^{114}$, L.E. Pedersen ${ }^{38}$, M. Pedersen ${ }^{120}$, S. Pedraza Lopez ${ }^{167}$, R. Pedro ${ }^{127 a, 127 b}$, S.V. Peleganchuk ${ }^{110, c}$, D. Pelikan ${ }^{165}$, O. Penc ${ }^{128}$, C. Peng ${ }^{35 a}$, H. Peng ${ }^{35 b}$, J. Penwell ${ }^{63}$, B.S. Peralva ${ }^{26 b}$, M.M. Perego ${ }^{137}$, D.V. Perepelitsa ${ }^{27}$, E. Perez Codina ${ }^{160 a}$, L. Perini ${ }^{93 a}$, $93 b$, H. Pernegger ${ }^{32}$, S. Perrella ${ }^{105 a, 105 b}$, R. Peschke ${ }^{44}$, V.D. Peshekhonov ${ }^{67}$, K. Peters ${ }^{44}$, R.F.Y. Peters ${ }^{86}$, B.A. Petersen ${ }^{32}$, T.C. Petersen ${ }^{38}$, E. Petit ${ }^{57}$, A. Petridis ${ }^{1}$, C. Petridou ${ }^{155}$, P. Petroff ${ }^{118}$, E. Petrolo ${ }^{133 a}$, M. Petrov ${ }^{121}$, F. Petrucci ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, N.E. Pettersson ${ }^{88}$, A. Peyaud ${ }^{137}$, R. Pezoa ${ }^{34 b}$, P.W. Phillips ${ }^{132}$, G. Piacquadio ${ }^{144}$, E. Pianori ${ }^{170}$, A. Picazio ${ }^{88}$, E. Piccaro ${ }^{78}$, M. Piccinini ${ }^{22 a, 22 b}$, M.A. Pickering ${ }^{121}$, R. Piegaia ${ }^{29}$,
 S. Pires ${ }^{82}$, H. Pirumov ${ }^{44}$, M. Pitt ${ }^{172}$, L. Plazak ${ }^{145 a}$, M.-A. Pleier ${ }^{27}$, V. Pleskot ${ }^{85}$, E. Plotnikova ${ }^{67}$, P. Plucinski ${ }^{92}$, D. Pluth ${ }^{66}$, R. Poettgen ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, L. Poggioli ${ }^{118}$, D. Pohl ${ }^{23}$, G. Polesello ${ }^{122 \mathrm{a}}$, A. Poley ${ }^{44}$, A. Policicchio ${ }^{39 a, 39 b}$, R. Polifka ${ }^{159}$, A. Polini ${ }^{22 a}$, C.S. Pollard ${ }^{55}$, V. Polychronakos ${ }^{27}$, K. Pommès ${ }^{32}$, L. Pontecorvo ${ }^{133 \mathrm{a}}$, B.G. Pope ${ }^{92}$, G.A. Popeneciu ${ }^{28 \mathrm{c}}$, D.S. Popovic ${ }^{14}$, A. Poppleton ${ }^{32}$, S. Pospisil ${ }^{129}$, K. Potamianos ${ }^{16}$, I.N. Potrap ${ }^{67}$, C.J. Potter ${ }^{30}$, C.T. Potter ${ }^{117}$, G. Poulard ${ }^{32}$, J. Poveda ${ }^{32}$, V. Pozdnyakov ${ }^{67}$, M.E. Pozo Astigarraga ${ }^{32}$, P. Pralavorio ${ }^{87}$, A. Pranko ${ }^{16}$, S. Prell ${ }^{66}$, D. Price ${ }^{86}$,
L.E. Price ${ }^{6}$, M. Primavera ${ }^{75 \mathrm{a}}$, S. Prince ${ }^{89}$, M. Proissl ${ }^{48}$, K. Prokofiev ${ }^{62 \mathrm{c}}$, F. Prokoshin ${ }^{34 \mathrm{~b}}$, S. Protopopescu ${ }^{27}$, J. Proudfoot ${ }^{6}$, M. Przybycien ${ }^{40}$, D. Puddu ${ }^{135 a, 135 b}$, M. Purohit ${ }^{27, a i}$, P. Puzo ${ }^{118}$, J. Qian ${ }^{91}$, G. Qin ${ }^{55}$, Y. Qin ${ }^{86}$, A. Quadt ${ }^{56}$, W.B. Quayle ${ }^{164 \mathrm{a}, 164 \mathrm{~b}}$, M. Queitsch-Maitland ${ }^{86}$, D. Quilty ${ }^{55}$, S. Raddum ${ }^{120}$, V. Radeka ${ }^{27}$, V. Radescu ${ }^{60 \mathrm{~b}}$, S.K. Radhakrishnan ${ }^{149}$, P. Radloff ${ }^{117}$, P. Rados ${ }^{90}$, F. Ragusa ${ }^{93 a, 93 b}$, G. Rahal ${ }^{178}$, J.A. Raine ${ }^{86}$, S. Rajagopalan ${ }^{27}$, M. Rammensee ${ }^{32}$, C. Rangel-Smith ${ }^{165}$, M.G. Ratti ${ }^{93 a, 93 b}$, F. Rauscher ${ }^{101}$, S. Rave ${ }^{85}$, T. Ravenscroft ${ }^{55}$, I. Ravinovich ${ }^{172}$, M. Raymond ${ }^{32}$, A.L. Read ${ }^{120}$, N.P. Readioff ${ }^{76}$, M. Reale ${ }^{75 a, 75 b}$, D.M. Rebuzzi ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, A. Redelbach ${ }^{174}$, G. Redlinger ${ }^{27}$, R. Reece ${ }^{138}$, K. Reeves ${ }^{43}$, L. Rehnisch ${ }^{17}$, J. Reichert ${ }^{123}$, H. Reisin ${ }^{29}$, C. Rembser ${ }^{32}$, H. Ren ${ }^{35 a}$, M. Rescigno ${ }^{133 a}$, S. Resconi ${ }^{93 a}$, O.L. Rezanova ${ }^{110, c}$, P. Reznicek ${ }^{130}$, R. Rezvani ${ }^{96}$, R. Richter ${ }^{102}$, S. Richter ${ }^{80}$, E. Richter-Was ${ }^{40 \mathrm{~b}}$, O. Ricken ${ }^{23}$, M. Ridel ${ }^{82}$, P. Rieck ${ }^{17}$, C.J. Riegel ${ }^{175}$, J. Rieger ${ }^{56}$, O. Rifki ${ }^{114}$, M. Rijssenbeek ${ }^{149}$, A. Rimoldi ${ }^{122 a, 122 b}$, M. Rimoldi ${ }^{18}$, L. Rinaldi ${ }^{22 \mathrm{a}}$, B. Ristić ${ }^{51}$, E. Ritsch ${ }^{32}$, I. Riu ${ }^{13}$, F. Rizatdinova ${ }^{115}$, E. Rizvi ${ }^{78}$, C. Rizzi ${ }^{13}$, S.H. Robertson ${ }^{89, l}$, A. Robichaud-Veronneau ${ }^{89}$, D. Robinson ${ }^{30}$, J.E.M. Robinson ${ }^{44}$, A. Robson ${ }^{55}$, C. Roda ${ }^{125 a, 125 b}$, Y. Rodina ${ }^{87}$, A. Rodriguez Perez ${ }^{13}$, D. Rodriguez Rodriguez ${ }^{167}$, S. Roe ${ }^{32}$, C.S. Rogan ${ }^{59}$, O. Røhne ${ }^{120}$, A. Romaniouk ${ }^{99}$, M. Romano ${ }^{22 a, 22 b}$, S.M. Romano Saez ${ }^{36}$, E. Romero Adam ${ }^{167}$, N. Rompotis ${ }^{139}$, M. Ronzani ${ }^{50}$, L. Roos ${ }^{82}$, E. Ros ${ }^{167}$, S. Rosati ${ }^{133 \mathrm{a}}$, K. Rosbach ${ }^{50}$, P. Rose ${ }^{138}$, O. Rosenthal ${ }^{142}$, N.-A. Rosien ${ }^{56}$, V. Rossetti ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, E. Rossi ${ }^{105 a}$, 105b , L.P. Rossi ${ }^{52 \mathrm{a}}$, J.H.N. Rosten ${ }^{30}$, R. $\operatorname{Rosten}^{139}$, M. Rotaru ${ }^{28 \mathrm{~b}}$, I. Roth ${ }^{172}$, J. Rothberg ${ }^{139}$, D. Rousseau ${ }^{118}$, C.R. Royon ${ }^{137}$, A. Rozanov ${ }^{87}$, Y. Rozen ${ }^{153}$, X. Ruan ${ }^{146 c}$, F. Rubbo ${ }^{144}$, M.S. Rudolph ${ }^{159}$, F. Rühr ${ }^{50}$, A. Ruiz-Martinez ${ }^{31}$, Z. Rurikova ${ }^{50}$, N.A. Rusakovich ${ }^{67}$, A. Ruschke ${ }^{101}$, H.L. Russell ${ }^{139}$, J.P. Rutherfoord ${ }^{7}$, N. Ruthmann ${ }^{32}$, Y.F. Ryabov ${ }^{124}$, M. Rybar ${ }^{166}$, G. Rybkin ${ }^{118}$, S. Ryu ${ }^{6}$, A. Ryzhov ${ }^{131}$, G.F. Rzehorz ${ }^{56}$, A.F. Saavedra ${ }^{151}$, G. Sabato ${ }^{108}$, S. Sacerdoti ${ }^{29}$, H.F-W. Sadrozinski ${ }^{138}$, R. Sadykov ${ }^{67}$, F. Safai Tehrani ${ }^{133 a}$, P. Saha ${ }^{109}$, M. Sahinsoy ${ }^{60 a}$, M. Saimpert ${ }^{137}$, T. Saito ${ }^{156}$, H. Sakamoto ${ }^{156}$, Y. Sakurai ${ }^{171}$, G. Salamanna ${ }^{135 a, 135 b}$, A. Salamon ${ }^{134 a, 134 b}$, J.E. Salazar Loyola ${ }^{34 b}$, D. Salek ${ }^{108}$, P.H. Sales De Bruin ${ }^{139}$, D. Salihagic ${ }^{102}$, A. Salnikov ${ }^{144}$, J. Salt ${ }^{167}$, D. Salvatore ${ }^{39 a}$, 39b , F. Salvatore ${ }^{150}$, A. Salvucci ${ }^{62 \mathrm{a}}$, A. Salzburger ${ }^{32}$, D. Sammel ${ }^{50}$, D. Sampsonidis ${ }^{155}$, A. Sanchez ${ }^{105 a}{ }^{105 b}$, J. Sánchez ${ }^{167}$, V. Sanchez Martinez ${ }^{167}$, H. Sandaker ${ }^{120}$, R.L. Sandbach ${ }^{78}$, H.G. Sander ${ }^{85}$, M. Sandhoff ${ }^{175}$, C. Sandoval ${ }^{21}$, R. Sandstroem ${ }^{102}$, D.P.C. Sankey ${ }^{132}$, M. Sannino ${ }^{52 a, 52 b}$, A. Sansoni ${ }^{49}$, C. Santoni ${ }^{36}$, R. Santonico ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, H. Santos ${ }^{127 \mathrm{a}}$, I. Santoyo Castillo ${ }^{150}$, K. Sapp ${ }^{126}$, A. Sapronov ${ }^{67}$, J.G. Saraiva ${ }^{127 a, 127 d}$, B. Sarrazin ${ }^{23}$, O. Sasaki ${ }^{68}$, Y. Sasaki ${ }^{156}$, K. Sato ${ }^{161}$, G. Sauvage ${ }^{5, *}$, E. Sauvan ${ }^{5}$, G. Savage ${ }^{79}$, P. Savard ${ }^{159, d}$, C. Sawyer ${ }^{132}$, L. Sawyer ${ }^{81, q}$, J. Saxon ${ }^{33}$, C. Sbarra ${ }^{22 a}$, A. Sbrizzi ${ }^{22 a, 22 b}$, T. Scanlon ${ }^{80}$, D.A. Scannicchio ${ }^{163}$, M. Scarcella ${ }^{151}$, V. Scarfone ${ }^{39 a, 39 b}$, J. Schaarschmidt ${ }^{172}$, P. Schacht ${ }^{102}$, B.M. Schachtner ${ }^{101}$, D. Schaefer ${ }^{32}$, R. Schaefer ${ }^{44}$, J. Schaeffer ${ }^{85}$, S. Schaepe ${ }^{23}$, S. Schaetzel ${ }^{60 b}$, U. Schäfer ${ }^{85}$, A.C. Schaffer ${ }^{118}$, D. Schaile ${ }^{101}$, R.D. Schamberger ${ }^{149}$, V. Scharf ${ }^{60 a}$, V.A. Schegelsky ${ }^{124}$, D. Scheirich ${ }^{130}$, M. Schernau ${ }^{163}$, C. Schiavi ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$, S. Schier ${ }^{138}$, C. Schillo ${ }^{50}$, M. Schioppa ${ }^{39 a, 39 b}$, S. Schlenker ${ }^{32}$, K.R. Schmidt-Sommerfeld ${ }^{102}$, K. Schmieden ${ }^{32}$, C. Schmitt 85, S. Schmitt ${ }^{44}$, S. Schmitz ${ }^{85}$, B. Schneider ${ }^{160 \mathrm{a}}$, U. Schnoor ${ }^{50}$, L. Schoeffel ${ }^{137}$, A. Schoening ${ }^{60 b}$, B.D. Schoenrock ${ }^{92}$, E. Schopf ${ }^{23}$, M. Schott ${ }^{85}$, J. Schovancova ${ }^{8}$, S. Schramm ${ }^{51}$, M. Schreyer ${ }^{174}$, N. Schuh ${ }^{85}$, M.J. Schultens ${ }^{23}$, H.-C. Schultz-Coulon ${ }^{60 a}$, H. Schulz ${ }^{17}$, M. Schumacher ${ }^{50}$, B.A. Schumm ${ }^{138}$, Ph. Schune ${ }^{137}$, A. Schwartzman ${ }^{144}$, T.A. Schwarz ${ }^{91}$, Ph. Schwegler ${ }^{102}$, H. Schweiger ${ }^{86}$, Ph. Schwemling ${ }^{137}$, R. Schwienhorst ${ }^{92}$, J. Schwindling ${ }^{137}$, T. Schwindt ${ }^{23}$, G. Sciolla ${ }^{25}$, F. Scuri ${ }^{125 a, 125 b}$, F. Scutti ${ }^{90}$, J. Searcy ${ }^{91}$, P. Seema ${ }^{23}$, S.C. Seidel ${ }^{106}$, A. Seiden ${ }^{138}$, F. Seifert ${ }^{129}$, J.M. Seixas ${ }^{26 a}$, G. Sekhniaidze ${ }^{105 a}$, K. Sekhon ${ }^{91}$, S.J. Sekula ${ }^{42}$, D.M. Seliverstov ${ }^{124, *}$, N. Semprini-Cesari ${ }^{22 a, 22 b}$, C. Serfon ${ }^{120}$, L. Serin ${ }^{118}$, L. Serkin ${ }^{164 a, 164 b}$, M. Sessa ${ }^{135 a, 135 b}$, R. Seuster ${ }^{169}$, H. Severini ${ }^{114}$, T. Sfiligoj ${ }^{77}$, F. Sforza ${ }^{32}$, A. Sfyrla ${ }^{51}$, E. Shabalina ${ }^{56}$, N.W. Shaikh ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, L.Y. Shan ${ }^{35 \mathrm{a}}$, R. Shang ${ }^{166}$, J.T. Shank ${ }^{24}$, M. Shapiro ${ }^{16}$, P.B. Shatalov ${ }^{98}$, K. Shaw ${ }^{164 a, 164 b}$, S.M. Shaw ${ }^{86}$, A. Shcherbakova ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C.Y. Shehu ${ }^{150}$, P. Sherwood ${ }^{80}$, L. Shi ${ }^{152, a j}$, S. Shimizu ${ }^{69}$, C.O. Shimmin ${ }^{163}$, M. Shimojima ${ }^{103}$, M. Shiyakova ${ }^{67, a k}$, A. Shmeleva ${ }^{97}$, D. Shoaleh Saadi ${ }^{96}$, M.J. Shochet ${ }^{33}$,
S. Shojaii ${ }^{93 a, 93 b}$, S. Shrestha ${ }^{112}$, E. Shulga ${ }^{99}$, M.A. Shupe ${ }^{7}$, P. Sicho ${ }^{128}$, A.M. Sickles ${ }^{166}$, P.E. Sidebo ${ }^{148}$, O. Sidiropoulou ${ }^{174}$, D. Sidorov ${ }^{115}$, A. Sidoti ${ }^{22 a, 22 b}$, F. Siegert ${ }^{46}$, Dj. Sijacki ${ }^{14}$, J. Silva ${ }^{127 a, 127 d}$, S.B. Silverstein ${ }^{147 a}$, V. Simak ${ }^{129}$, O. Simard ${ }^{5}$, Lj. Simic ${ }^{14}$, S. Simion ${ }^{118}$, E. Simioni ${ }^{85}$, B. Simmons ${ }^{80}$, D. Simon ${ }^{36}$, M. Simon ${ }^{85}$, P. Sinervo ${ }^{159}$, N.B. Sinev ${ }^{117}$, M. Sioli ${ }^{22 a, 22 b}$, G. Siragusa ${ }^{174}$,
S.Yu. Sivoklokov ${ }^{100}$, J. Sjölin ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, T.B. Sjursen ${ }^{15}$, M.B. Skinner ${ }^{74}$, H.P. Skottowe ${ }^{59}$, P. Skubic ${ }^{114}$, M. Slater ${ }^{19}$, T. Slavicek ${ }^{129}$, M. Slawinska ${ }^{108}$, K. Sliwa ${ }^{162}$, R. Slovak ${ }^{130}$, V. Smakhtin ${ }^{172}$, B.H. Smart ${ }^{5}$, L. Smestad ${ }^{15}$, J. Smiesko ${ }^{145 a}$, S.Yu. Smirnov ${ }^{99}$, Y. Smirnov ${ }^{99}$, L.N. Smirnova ${ }^{100, a l}$, O. Smirnova ${ }^{83}$, M.N.K. Smith ${ }^{37}$, R.W. Smith ${ }^{37}$, M. Smizanska ${ }^{74}$, K. Smolek ${ }^{129}$, A.A. Snesarev ${ }^{97}$, S. Snyder ${ }^{27}$, R. Sobie ${ }^{169, l}$, F. Socher ${ }^{46}$, A. Soffer ${ }^{154}$, D.A. Soh ${ }^{152}$, G. Sokhrannyi ${ }^{77}$, C.A. Solans Sanchez ${ }^{32}$, M. Solar ${ }^{129}$, E.Yu. Soldatov ${ }^{99}$, U. Soldevila ${ }^{167}$, A.A. Solodkov ${ }^{131}$, A. Soloshenko ${ }^{67}$, O.V. Solovyanov ${ }^{131}$, V. Solovyev ${ }^{124}$, P. Sommer ${ }^{50}$, H. Son ${ }^{162}$, H.Y. Song ${ }^{35 b}, a m$, A. Sood ${ }^{16}$, A. Sopczak ${ }^{129}$, V. Sopko ${ }^{129}$, V. Sorin ${ }^{13}$, D. Sosa ${ }^{60 b}$, C.L. Sotiropoulou ${ }^{125 a, 125 b}$, R. Soualah ${ }^{164 a, 164 c}$, A.M. Soukharev ${ }^{110, c}$, D. South ${ }^{44}$, B.C. Sowden ${ }^{79}$, S. Spagnolo ${ }^{75 a, 75 b}$, M. Spalla ${ }^{125 a, 125 b}$, M. Spangenberg ${ }^{170}$, F. Spanò ${ }^{79}$, D. Sperlich ${ }^{17}$, F. Spettel ${ }^{102}$, R. Spighi ${ }^{22 a}$, G. Spigo ${ }^{32}$, L.A. Spiller ${ }^{90}$, M. Spousta ${ }^{130}$, R.D. St. Denis ${ }^{55, *}$, A. Stabile ${ }^{93 a}$, R. Stamen ${ }^{60 a}$, S. Stamm ${ }^{17}$, E. Stanecka ${ }^{41}$, R.W. Stanek ${ }^{6}$, C. Stanescu ${ }^{135 a}$, M. Stanescu-Bellu ${ }^{44}$, M.M. Stanitzki ${ }^{44}$, S. Stapnes ${ }^{120}$, E.A. Starchenko ${ }^{131}$, G.H. Stark ${ }^{33}$, J. Stark ${ }^{57}$, P. Staroba ${ }^{128}$, P. Starovoitov ${ }^{60 \text { a }}$, S. Stärz ${ }^{32}$, R. Staszewski ${ }^{41}$, P. Steinberg ${ }^{27}$, B. Stelzer ${ }^{143}$, H.J. Stelzer ${ }^{32}$, O. Stelzer-Chilton ${ }^{160 \mathrm{a}}$, H. Stenzel ${ }^{54}$, G.A. Stewart ${ }^{55}$, J.A. Stillings ${ }^{23}$, M.C. Stockton ${ }^{89}$, M. Stoebe ${ }^{89}$, G. Stoicea ${ }^{28 b}$, P. Stolte ${ }^{56}$, S. Stonjek ${ }^{102}$, A.R. Stradling ${ }^{8}$, A. Straessner ${ }^{46}$, M.E. Stramaglia ${ }^{18}$, J. Strandberg ${ }^{148}$, S. Strandberg ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Strandlie ${ }^{120}$, M. Strauss ${ }^{114}$, P. Strizenec ${ }^{145 b}$, R. Ströhmer ${ }^{174}$, D.M. Strom ${ }^{117}$, R. Stroynowski ${ }^{42}$, A. Strubig ${ }^{107}$, S.A. Stucci ${ }^{18}$, B. Stugu ${ }^{15}$, N.A. Styles ${ }^{44}$, D. Su 144, J. Su ${ }^{126}$, R. Subramaniam ${ }^{81}$, S. Suchek ${ }^{60 \text { a }}$, Y. Sugaya ${ }^{119}$, M. Suk ${ }^{129}$, V.V. Sulin ${ }^{97}$, S. Sultansoy ${ }^{4 c}$, T. Sumida ${ }^{70}$, S. Sun ${ }^{59}$, X. Sun ${ }^{35 a}$, J.E. Sundermann ${ }^{50}$, K. Suruliz ${ }^{150}$, G. Susinno ${ }^{39 a, 39 b}$, M.R. Sutton ${ }^{150}$, S. Suzuki ${ }^{68}$, M. Svatos ${ }^{128}$, M. Swiatlowski ${ }^{33}$, I. Sykora ${ }^{145 a}$, T. Sykora ${ }^{130}$, D. Ta ${ }^{50}$, C. Taccini ${ }^{135 a, 135 b}$, K. Tackmann ${ }^{44}$, J. Taenzer ${ }^{159}$, A. Taffard ${ }^{163}$, R. Tafirout ${ }^{160 a}$, N. Taiblum ${ }^{154}$, H. Takai ${ }^{27}$, R. Takashima ${ }^{71}$, T. Takeshita ${ }^{141}$, Y. Takubo ${ }^{68}$, M. Talby ${ }^{87}$, A.A. Talyshev ${ }^{110, c}$, K.G. Tan 90, J. Tanaka ${ }^{156}$, R. Tanaka ${ }^{118}$, S. Tanaka ${ }^{68}$, B.B. Tannenwald ${ }^{112}$, S. Tapia Araya ${ }^{34 b}$, S. Tapprogge ${ }^{85}$, S. Tarem ${ }^{153}$, G.F. Tartarelli ${ }^{93 a}$, P. Tas ${ }^{130}$, M. Tasevsky ${ }^{128}$, T. Tashiro ${ }^{70}$, E. Tassi ${ }^{39 a, 39 b}$, A. Tavares Delgado ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, Y. Tayalati ${ }^{136 \mathrm{~d}}$, A.C. Taylor ${ }^{106}$, G.N. Taylor ${ }^{90}$, P.T.E. Taylor ${ }^{90}$, W. Taylor ${ }^{160 \mathrm{~b}}$, F.A. Teischinger ${ }^{32}$, P. Teixeira-Dias ${ }^{79}$, K.K. Temming ${ }^{50}$, D. Temple ${ }^{143}$, H. Ten Kate ${ }^{32}$, P.K. Teng ${ }^{152}$, J.J. Teoh ${ }^{119}$, F. Tepel ${ }^{175}$, S. Terada ${ }^{68}$, K. Terashi ${ }^{156}$, J. Terron ${ }^{84}$, S. Terzo ${ }^{102}$, M. Testa ${ }^{49}$, R.J. Teuscher ${ }^{159, l}$, T. Theveneaux-Pelzer ${ }^{87}$, J.P. Thomas ${ }^{19}$, J. Thomas-Wilsker ${ }^{79}$, E.N. Thompson ${ }^{37}$, P.D. Thompson ${ }^{19}$, A.S. Thompson ${ }^{55}$, L.A. Thomsen ${ }^{176}$, E. Thomson ${ }^{123}$, M. Thomson ${ }^{30}$, M.J. Tibbetts ${ }^{16}$, R.E. Ticse Torres ${ }^{87}$, V.O. Tikhomirov ${ }^{97, a n}$, Yu.A. Tikhonov ${ }^{110, c}$, S. Timoshenko ${ }^{99}$, P. Tipton ${ }^{176}$, S. Tisserant ${ }^{87}$, K. Todome ${ }^{158}$, T. Todorov ${ }^{5, *}$, S. Todorova-Nova ${ }^{130}$, J. Tojo ${ }^{72}$, S. Tokár ${ }^{145 a}$, K. Tokushuku ${ }^{68}$, E. Tolley ${ }^{59}$, L. Tomlinson ${ }^{86}$, M. Tomoto ${ }^{104}$, L. Tompkins ${ }^{144, a o}$, K. Toms ${ }^{106}$, B. Tong ${ }^{59}$, E. Torrence ${ }^{117}$, H. Torres ${ }^{143}$, E. Torró Pastor ${ }^{139}$, J. Toth ${ }^{87, a p}$, F. Touchard ${ }^{87}$, D.R. Tovey ${ }^{140}$, T. Trefzger ${ }^{174}$, A. Tricoli ${ }^{27}$, I.M. Trigger ${ }^{160 \mathrm{a}}$, S. Trincaz-Duvoid ${ }^{82}$, M.F. Tripiana ${ }^{13}$, W. Trischuk ${ }^{159}$, B. Trocmé ${ }^{57}$, A. Trofymov ${ }^{44}$, C. Troncon ${ }^{93 a}$, M. Trottier-McDonald ${ }^{16}$, M. Trovatelli ${ }^{169}$, L. Truong ${ }^{164 a, 164 \mathrm{c}}$, M. Trzebinski ${ }^{41}$, A. Trzupek ${ }^{41}$, J.C-L. Tseng ${ }^{121}$, P.V. Tsiareshka ${ }^{94}$, G. Tsipolitis ${ }^{10}$, N. Tsirintanis ${ }^{9}$, S. Tsiskaridze ${ }^{13}$, V. Tsiskaridze ${ }^{50}$, E.G. Tskhadadze ${ }^{53 a}$, K.M. Tsui ${ }^{62 a}$, I.I. Tsukerman ${ }^{98}$, V. Tsulaia ${ }^{16}$, S. Tsuno ${ }^{68}$, D. Tsybychev ${ }^{149}$, A. Tudorache ${ }^{28 \mathrm{~b}}$, V. Tudorache ${ }^{28 \mathrm{~b}}$, A.N. Tuna ${ }^{59}$, S.A. Tupputi ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$, S. Turchikhin ${ }^{100, a l}$, D. Turecek ${ }^{129}$, D. Turgeman ${ }^{172}$, R. Turra ${ }^{93 \mathrm{a}, 93 \mathrm{~b}}$, A.J. Turvey ${ }^{42}$, P.M. Tuts ${ }^{37}$, M. Tyndel ${ }^{132}$, G. Ucchielli ${ }^{22 a, 22 b}$, I. Ueda ${ }^{156}$, R. Ueno ${ }^{31}$, M. Ughetto ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, F. Ukegawa ${ }^{161}$, G. Unal ${ }^{32}$, A. Undrus ${ }^{27}$, G. Unel ${ }^{163}$, F.C. Ungaro ${ }^{90}$, Y. Unno ${ }^{68}$, C. Unverdorben ${ }^{101}$, J. Urban ${ }^{145 b}$, P. Urquijo ${ }^{90}$, P. Urrejola ${ }^{85}$, G. Usai ${ }^{8}$, A. Usanova ${ }^{64}$, L. Vacavant ${ }^{87}$, V. Vacek ${ }^{129}$, B. Vachon ${ }^{89}$, C. Valderanis ${ }^{101}$, E. Valdes Santurio ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, N. Valencic ${ }^{108}$, S. Valentinetti ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$,
A. Valero ${ }^{167}$, L. Valery ${ }^{13}$, S. Valkar ${ }^{130}$, S. Vallecorsa ${ }^{51}$, J.A. Valls Ferrer ${ }^{167}$, W. Van Den Wollenberg ${ }^{108}$, P.C. Van Der Deij 1^{108}, R. van der Geer ${ }^{108}$, H. van der Graaf ${ }^{108}$, N. van Eldik ${ }^{153}$, P. van Gemmeren ${ }^{6}$, J. Van Nieuwkoop ${ }^{143}$, I. van Vulpen ${ }^{108}$, M.C. van Woerden ${ }^{32}$, M. Vanadia ${ }^{133 a, 133 b}$, W. Vandelli ${ }^{32}$, R. Vanguri ${ }^{123}$, A. Vaniachine ${ }^{131}$, P. Vankov ${ }^{108}$, G. Vardanyan ${ }^{177}$, R. Vari ${ }^{133 a}$, E.W. Varnes ${ }^{7}$, T. Varol ${ }^{42}$, D. Varouchas ${ }^{82}$, A. Vartapetian ${ }^{8}$, K.E. Varvell ${ }^{151}$, J.G. Vasquez ${ }^{176}$, F. Vazeille ${ }^{36}$,
T. Vazquez Schroeder ${ }^{89}$, J. Veatch ${ }^{56}$, L.M. Veloce ${ }^{159}$, F. Veloso ${ }^{127 a, 127 c}$, S. Veneziano ${ }^{133 a}$,
A. Ventura ${ }^{75 a, 75 b}$, M. Venturi ${ }^{169}$, N. Venturi ${ }^{159}$, A. Venturini ${ }^{25}$, V. Vercesi ${ }^{122 a}$, M. Verducci ${ }^{133 a, 133 b}$, W. Verkerke ${ }^{108}$, J.C. Vermeulen ${ }^{108}$, A. Vest ${ }^{46, a q}$, M.C. Vetterli ${ }^{143, d}$, O. Viazlo ${ }^{83}$, I. Vichou ${ }^{166}$, T. Vickey ${ }^{140}$, O.E. Vickey Boeriu ${ }^{140}$, G.H.A. Viehhauser ${ }^{121}$, S. Viel ${ }^{16}$, L. Vigani ${ }^{121}$, R. Vigne ${ }^{64}$, M. Villa ${ }^{22 a, 22 b}$, M. Villaplana Perez ${ }^{93 a, 93 b}$, E. Vilucchi ${ }^{49}$, M.G. Vincter ${ }^{31}$, V.B. Vinogradov ${ }^{67}$, C. Vittori ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$, I. Vivarelli ${ }^{150}$, S. Vlachos ${ }^{10}$, M. Vlasak ${ }^{129}$, M. Vogel ${ }^{175}$, P. Vokac ${ }^{129}$, G. Volpi ${ }^{125 a, 125 b}$, M. Volpi ${ }^{90}$, H. von der Schmitt ${ }^{102}$, E. von Toerne ${ }^{23}$, V. Vorobel ${ }^{130}$, K. Vorobev ${ }^{99}$, M. Vos ${ }^{167}$, R. Voss ${ }^{32}$, J.H. Vossebeld ${ }^{76}$, N. Vranjes ${ }^{14}$, M. Vranjes Milosavljevic ${ }^{14}$, V. Vrba ${ }^{128}$, M. Vreeswijk ${ }^{108}$, R. Vuillermet ${ }^{32}$, I. Vukotic ${ }^{33}$, Z. Vykydal ${ }^{129}$, P. Wagner ${ }^{23}$, W. Wagner ${ }^{175}$, H. Wahlberg ${ }^{73}$,
S. Wahrmund ${ }^{46}$, J. Wakabayashi ${ }^{104}$, J. Walder ${ }^{74}$, R. Walker ${ }^{101}$, W. Walkowiak ${ }^{142}$, V. Wallangen ${ }^{147 a, 147 b}$, C. Wang ${ }^{35 \mathrm{c}}$, C. Wang ${ }^{35 \mathrm{~d}, 87}$, F. Wang ${ }^{173}$, H. Wang ${ }^{16}$, H. Wang ${ }^{42}$, J. Wang ${ }^{44}$, J. Wang ${ }^{151}$, K. Wang ${ }^{89}$, R. Wang ${ }^{6}$, S.M. Wang ${ }^{152}$, T. Wang ${ }^{23}$, T. Wang ${ }^{37}$, W. Wang ${ }^{35 b}$, X. Wang ${ }^{176}$, C. Wanotayaroj ${ }^{117}$, A. Warburton ${ }^{89}$, C.P. Ward ${ }^{30}$, D.R. Wardrope ${ }^{80}$, A. Washbrook ${ }^{48}$, P.M. Watkins ${ }^{19}$, A.T. Watson ${ }^{19}$, M.F. Watson ${ }^{19}$, G. Watts ${ }^{139}$, S. Watts ${ }^{86}$, B.M. Waugh ${ }^{80}$, S. Webb ${ }^{85}$, M.S. Weber ${ }^{18}$, S.W. Weber ${ }^{174}$, J.S. Webster ${ }^{6}$, A.R. Weidberg ${ }^{121}$, B. Weinert ${ }^{63}$, J. Weingarten ${ }^{56}$, C. Weiser ${ }^{50}$, H. Weits ${ }^{108}$, P.S. Wells ${ }^{32}$, T. Wenaus ${ }^{27}$, T. Wengler ${ }^{32}$, S. Wenig ${ }^{32}$, N. Wermes ${ }^{23}$, M. Werner ${ }^{50}$, P. Werner ${ }^{32}$, M. Wessels ${ }^{60 \mathrm{a}}$, J. Wetter ${ }^{162}$, K. Whalen ${ }^{117}$, N.L. Whallon ${ }^{139}$, A.M. Wharton ${ }^{74}$, A. White ${ }^{8}$, M.J. White ${ }^{1}$, R. White ${ }^{34 b}$, D. Whiteson ${ }^{163}$, F.J. Wickens ${ }^{132}$, W. Wiedenmann ${ }^{173}$, M. Wielers ${ }^{132}$, P. Wienemann ${ }^{23}$,
C. Wiglesworth ${ }^{38}$, L.A.M. Wiik-Fuchs ${ }^{23}$, A. Wildauer ${ }^{102}$, F. Wilk ${ }^{86}$, H.G. Wilkens ${ }^{32}$, H.H. Williams ${ }^{123}$, S. Williams ${ }^{108}$, C. Willis ${ }^{92}$, S. Willocq ${ }^{88}$, J.A. Wilson ${ }^{19}$, I. Wingerter-Seez ${ }^{5}$, F. Winklmeier ${ }^{117}$, O.J. Winston ${ }^{150}$, B.T. Winter ${ }^{23}$, M. Wittgen ${ }^{144}$, J. Wittkowski ${ }^{101}$, S.J. Wollstadt ${ }^{85}$, M.W. Wolter ${ }^{41}$, H. Wolters ${ }^{127 \mathrm{a}, 127 \mathrm{c}}$, B.K. Wosiek ${ }^{41}$, J. Wotschack ${ }^{32}$, M.J. Woudstra ${ }^{86}$, K.W. Wozniak ${ }^{41}$, M. Wu ${ }^{57}$, M. Wu ${ }^{33}$, S.L. Wu ${ }^{173}$, X. Wu ${ }^{51}$, Y. Wu ${ }^{91}$, T.R. Wyatt ${ }^{86}$, B.M. Wynne ${ }^{48}$, S. Xella ${ }^{38}$, D. Xu ${ }^{35 a}$, L. Xu ${ }^{27}$, B. Yabsley ${ }^{151}$, S. Yacoob ${ }^{146 a}$, R. Yakabe ${ }^{69}$, D. Yamaguchi ${ }^{158}$, Y. Yamaguchi ${ }^{119}$, A. Yamamoto ${ }^{68}$, S. Yamamoto ${ }^{156}$, T. Yamanaka ${ }^{156}$, K. Yamauchi ${ }^{104}$, Y. Yamazaki ${ }^{69}$, Z. Yan ${ }^{24}$, H. Yang ${ }^{35 e}$, H. Yang ${ }^{173}$, Y. Yang ${ }^{152}$, Z. Yang ${ }^{15}$, W-M. Yao ${ }^{16}$, Y.C. Yap ${ }^{82}$, Y. Yasu ${ }^{68}$, E. Yatsenko ${ }^{5}$, K.H. Yau Wong ${ }^{23}$, J. Ye ${ }^{42}$, S. Ye ${ }^{27}$, I. Yeletskikh ${ }^{67}$, A.L. Yen ${ }^{59}$, E. Yildirim ${ }^{85}$, K. Yorita ${ }^{171}$, R. Yoshida ${ }^{6}$, K. Yoshihara ${ }^{123}$, C. Young ${ }^{144}$, C.J.S. Young ${ }^{32}$, S. Youssef ${ }^{24}$, D.R. Yu ${ }^{16}$, J. Yu ${ }^{8}$, J.M. Yu ${ }^{91}$, J. Yu ${ }^{66}$, L. Yuan ${ }^{69}$, S.P.Y. Yuen ${ }^{23}$, I. Yusuff ${ }^{30, a r}$, B. Zabinski ${ }^{41}$, R. Zaidan ${ }^{35 d}$, A.M. Zaitsev ${ }^{131, a e}$, N. Zakharchuk ${ }^{44}$, J. Zalieckas ${ }^{15}$, A. Zaman ${ }^{149}$, S. Zambito ${ }^{59}$, L. Zanello ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, D. Zanzi ${ }^{90}$, C. Zeitnitz ${ }^{175}$, M. Zeman ${ }^{129}$, A. Zemla ${ }^{40 a}$, J.C. Zeng ${ }^{166}$, Q. Zeng ${ }^{144}$, K. Zengel ${ }^{25}$, O. Zenin ${ }^{131}$, T. Ženiš ${ }^{145 a}$, D. Zerwas ${ }^{118}$, D. Zhang ${ }^{91}$, F. Zhang ${ }^{173}$, G. Zhang ${ }^{35 b, a m}$, H. Zhang ${ }^{35 c}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{50}$, R. Zhang ${ }^{23}$, R. Zhang ${ }^{35 b, a s}$, X. Zhang ${ }^{35 d}$, Z. Zhang ${ }^{118}$, X. Zhao ${ }^{42}$, Y. Zhao ${ }^{35 d}$, Z. Zhao ${ }^{35 b}$, A. Zhemchugov ${ }^{67}$, J. Zhong ${ }^{121}$, B. Zhou ${ }^{91}$, C. Zhou ${ }^{47}$, L. Zhou ${ }^{37}$, L. Zhou ${ }^{42}$, M. Zhou ${ }^{149}$, N. Zhou ${ }^{35 f}$, C.G. Zhu ${ }^{35 d}$, H. Zhu ${ }^{35 \mathrm{a}}$, J. Zhu ${ }^{91}$, Y. Zhu ${ }^{35 \mathrm{~b}}$, X. Zhuang ${ }^{35 \mathrm{a}}$, K. Zhukov ${ }^{97}$, A. Zibell ${ }^{174}$, D. Zieminska ${ }^{63}$, N.I. Zimine ${ }^{67}$, C. Zimmermann ${ }^{85}$, S. Zimmermann ${ }^{50}$, Z. Zinonos ${ }^{56}$, M. Zinser ${ }^{85}$, M. Ziolkowski ${ }^{142}$, L. Živković ${ }^{14}$, G. Zobernig ${ }^{173}$, A. Zoccoli $^{22 a, 22 b}$, M. zur Nedden ${ }^{17}$, G. Zurzolo ${ }^{105 a, 105 b}$, L. Zwalinski ${ }^{32}$.
${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
${ }^{2}$ Physics Department, SUNY Albany, Albany NY, United States of America
${ }^{3}$ Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; ${ }^{(b)}$ Istanbul Aydin University, Istanbul; ${ }^{(c)}$

Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
${ }^{5}$ LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
${ }^{7}$ Department of Physics, University of Arizona, Tucson AZ, United States of America
${ }^{8}$ Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
${ }^{9}$ Physics Department, University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Department of Physics, The University of Texas at Austin, Austin TX, United States of America
${ }^{12}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{13}$ Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain, Spain
${ }^{14}$ Institute of Physics, University of Belgrade, Belgrade, Serbia
${ }^{15}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{16}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
${ }^{17}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{18}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{19}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
$20{ }^{(a)}$ Department of Physics, Bogazici University, Istanbul; ${ }^{(b)}$ Department of Physics Engineering, Gaziantep University, Gaziantep; ${ }^{(d)}$ Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul,Turkey; ${ }^{(e)}$ Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey, Turkey
${ }^{21}$ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
$22{ }^{(a)}$ INFN Sezione di Bologna; ${ }^{(b)}$ Dipartimento di Fisica e Astronomia, Università di Bologna,

Bologna, Italy

${ }^{23}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{24}$ Department of Physics, Boston University, Boston MA, United States of America
${ }^{25}$ Department of Physics, Brandeis University, Waltham MA, United States of America
$26{ }^{(a)}$ Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ${ }^{(b)}$ Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; ${ }^{(c)}$ Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ${ }^{(d)}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil ${ }^{27}$ Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
$28{ }^{(a)}$ Transilvania University of Brasov, Brasov, Romania; ${ }^{(b)}$ National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(c)}$ National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; ${ }^{(d)}$ University Politehnica Bucharest, Bucharest; ${ }^{(e)}$ West University in Timisoara, Timisoara, Romania
${ }^{29}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{30}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{31}$ Department of Physics, Carleton University, Ottawa ON, Canada
${ }^{32}$ CERN, Geneva, Switzerland
${ }^{33}$ Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
$34{ }^{(a)}$ Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ${ }^{(b)}$ Department of Modern Physics, University of Science and Technology of China, Anhui; ${ }^{(c)}$ Department of Physics, Nanjing University, Jiangsu; ${ }^{(d)}$ School of Physics, Shandong University, Shandong; ${ }^{(e)}$ Department of

Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (also affiliated with PKU-CHEP); ${ }^{(f)}$ Physics Department, Tsinghua University, Beijing 100084, China
${ }^{36}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
${ }^{37}$ Nevis Laboratory, Columbia University, Irvington NY, United States of America
${ }^{38}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
39 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Rende, Italy
$40{ }^{(a)}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; ${ }^{(b)}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland ${ }^{41}$ Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
${ }^{42}$ Physics Department, Southern Methodist University, Dallas TX, United States of America
${ }^{43}$ Physics Department, University of Texas at Dallas, Richardson TX, United States of America
${ }^{44}$ DESY, Hamburg and Zeuthen, Germany
${ }^{45}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{46}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{47}$ Department of Physics, Duke University, Durham NC, United States of America
${ }^{48}$ SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{49}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{50}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
${ }^{51}$ Section de Physique, Université de Genève, Geneva, Switzerland
52 (a) INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
$53{ }^{(a)}$ E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
${ }^{54}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
${ }^{55}$ SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{56}$ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{57}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
${ }^{58}$ Department of Physics, Hampton University, Hampton VA, United States of America
${ }^{59}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
$60{ }^{(a)}$ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(b)}$
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(c)}$ ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
${ }^{61}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
$62{ }^{(a)}$ Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; ${ }^{(b)}$
Department of Physics, The University of Hong Kong, Hong Kong; ${ }^{(c)}$ Department of Physics, The
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
${ }^{63}$ Department of Physics, Indiana University, Bloomington IN, United States of America
${ }^{64}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{65}$ University of Iowa, Iowa City IA, United States of America
${ }^{66}$ Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
${ }^{67}$ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{68}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{69}$ Graduate School of Science, Kobe University, Kobe, Japan
${ }^{70}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{71}$ Kyoto University of Education, Kyoto, Japan
${ }^{72}$ Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{73}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{74}$ Physics Department, Lancaster University, Lancaster, United Kingdom
$75{ }^{(a)}$ INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
${ }^{76}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{77}$ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
${ }^{78}$ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
${ }^{79}$ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
${ }^{80}$ Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{81}$ Louisiana Tech University, Ruston LA, United States of America
${ }^{82}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{83}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{84}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{85}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{86}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{87}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{88}$ Department of Physics, University of Massachusetts, Amherst MA, United States of America
${ }^{89}$ Department of Physics, McGill University, Montreal QC, Canada
${ }^{90}$ School of Physics, University of Melbourne, Victoria, Australia
${ }^{91}$ Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
${ }^{92}$ Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
93 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
${ }^{94}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
${ }^{95}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
${ }^{96}$ Group of Particle Physics, University of Montreal, Montreal QC, Canada
${ }^{97}$ P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
${ }^{98}$ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{99}$ National Research Nuclear University MEPhI, Moscow, Russia
${ }^{100}$ D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
${ }^{101}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
${ }^{102}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
${ }^{103}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
${ }^{104}$ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
$105{ }^{(a)}$ INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Fisica, Università di Napoli, Napoli, Italy
${ }^{106}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
${ }^{107}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
108 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam,

Netherlands
${ }^{109}$ Department of Physics, Northern Illinois University, DeKalb IL, United States of America
${ }^{110}$ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
${ }^{111}$ Department of Physics, New York University, New York NY, United States of America
112 Ohio State University, Columbus OH, United States of America
${ }^{113}$ Faculty of Science, Okayama University, Okayama, Japan
${ }^{114}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
${ }^{115}$ Department of Physics, Oklahoma State University, Stillwater OK, United States of America
${ }_{116}$ Palacký University, RCPTM, Olomouc, Czech Republic
${ }^{117}$ Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
${ }^{118}$ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
119 Graduate School of Science, Osaka University, Osaka, Japan
${ }^{120}$ Department of Physics, University of Oslo, Oslo, Norway
${ }^{121}$ Department of Physics, Oxford University, Oxford, United Kingdom
122 (a) INFN Sezione di Pavia; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
123 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
${ }^{124}$ National Research Centre "Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
$125{ }^{(a)}$ INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
${ }^{126}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
127 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; ${ }^{(b)}$ Faculdade de Ciências, Universidade de Lisboa, Lisboa; ${ }^{(c)}$ Department of Physics, University of Coimbra, Coimbra;
${ }^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisboa; ${ }^{(e)}$ Departamento de Fisica, Universidade do Minho, Braga; ${ }^{(f)}$ Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); ${ }^{(g)}$ Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
${ }^{128}$ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
${ }^{129}$ Czech Technical University in Prague, Praha, Czech Republic
${ }^{130}$ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
${ }^{131}$ State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
${ }^{132}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
133 (a) INFN Sezione di Roma; ${ }^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
$134{ }^{(a)}$ INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata,
Roma, Italy
$135{ }^{(a)}$ INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies -
Université Hassan II, Casablanca; ${ }^{(b)}$ Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ${ }^{\left({ }^{(e)} \text { Faculté des sciences, Université }\right.}$ Mohammed V, Rabat, Morocco
${ }^{137}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
${ }^{138}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
${ }^{139}$ Department of Physics, University of Washington, Seattle WA, United States of America
${ }^{140}$ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
${ }^{141}$ Department of Physics, Shinshu University, Nagano, Japan
${ }^{142}$ Fachbereich Physik, Universität Siegen, Siegen, Germany
${ }^{143}$ Department of Physics, Simon Fraser University, Burnaby BC, Canada
${ }^{144}$ SLAC National Accelerator Laboratory, Stanford CA, United States of America
$145{ }^{(a)}$ Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town; ${ }^{(b)}$ Department of Physics, University of Johannesburg, Johannesburg; ${ }^{(c)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
$147{ }^{(a)}$ Department of Physics, Stockholm University; ${ }^{(b)}$ The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
${ }^{149}$ Departments of Physics \& Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
${ }^{150}$ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
${ }^{151}$ School of Physics, University of Sydney, Sydney, Australia
${ }^{152}$ Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{153}$ Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
${ }^{154}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
${ }^{156}$ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
${ }^{157}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
${ }^{158}$ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
${ }^{159}$ Department of Physics, University of Toronto, Toronto ON, Canada
160 (a) TRIUMF, Vancouver BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto ON, Canada
${ }^{161}$ Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
${ }^{162}$ Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
$164{ }^{(a)}$ INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
${ }^{165}$ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
${ }^{166}$ Department of Physics, University of Illinois, Urbana IL, United States of America
${ }^{167}$ Instituto de Fisica Corpuscular (IFIC) and Departamento de Fisica Atomica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona
(IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver BC, Canada
${ }^{169}$ Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
${ }^{170}$ Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{171}$ Waseda University, Tokyo, Japan
${ }^{172}$ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
${ }^{173}$ Department of Physics, University of Wisconsin, Madison WI, United States of America
${ }^{174}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{175}$ Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{176}$ Department of Physics, Yale University, New Haven CT, United States of America
177 Yerevan Physics Institute, Yerevan, Armenia
${ }^{178}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{a}$ Also at Department of Physics, King's College London, London, United Kingdom
${ }^{b}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{c}$ Also at Novosibirsk State University, Novosibirsk, Russia
${ }^{d}$ Also at TRIUMF, Vancouver BC, Canada
${ }^{e}$ Also at Department of Physics \& Astronomy, University of Louisville, Louisville, KY, United States of America
${ }^{f}$ Also at Department of Physics, California State University, Fresno CA, United States of America
${ }^{g}$ Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
${ }^{h}$ Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
${ }^{i}$ Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal
${ }^{j}$ Also at Tomsk State University, Tomsk, Russia
${ }^{k}$ Also at Universita di Napoli Parthenope, Napoli, Italy
${ }^{l}$ Also at Institute of Particle Physics (IPP), Canada
${ }^{m}$ Also at National Institute of Physics and Nuclear Engineering, Bucharest, Romania
${ }^{n}$ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
${ }^{o}$ Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
${ }^{p}$ Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa
${ }^{q}$ Also at Louisiana Tech University, Ruston LA, United States of America
${ }^{r}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
${ }^{s}$ Also at Graduate School of Science, Osaka University, Osaka, Japan
${ }^{t}$ Also at Department of Physics, National Tsing Hua University, Taiwan
${ }^{u}$ Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
${ }^{v}$ Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
${ }^{w}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
${ }^{x}$ Also at CERN, Geneva, Switzerland
${ }^{y}$ Also at Georgian Technical University (GTU),Tbilisi, Georgia
${ }^{z}$ Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
${ }^{a a}$ Also at Manhattan College, New York NY, United States of America
${ }^{a b}$ Also at Hellenic Open University, Patras, Greece
${ }^{a c}$ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{a d}$ Also at School of Physics, Shandong University, Shandong, China
ae Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
${ }^{a f}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland
${ }^{a g}$ Also at Eotvos Lorand University, Budapest, Hungary
${ }^{a h}$ Also at International School for Advanced Studies (SISSA), Trieste, Italy
${ }^{a i}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
${ }^{a j}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
${ }^{a k}$ Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
${ }^{\text {al }}$ Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
${ }^{a m}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{a n}$ Also at National Research Nuclear University MEPhI, Moscow, Russia
${ }^{a o}$ Also at Department of Physics, Stanford University, Stanford CA, United States of America
${ }^{a p}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
${ }^{a q}$ Also at Flensburg University of Applied Sciences, Flensburg, Germany
${ }^{a r}$ Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
${ }^{\text {as }}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

* Deceased

[^0]: ${ }^{1}$ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$.

