Jungo, Alain

Up a level
Export as [feed] RSS
Group by: Date | Item Type | Refereed | No Grouping
Jump to: Yes

Yes

Jungo, Alain; Scheidegger, Olivier; Reyes, Mauricio; Balsiger, Fabian (2021). pymia: A Python package for data handling and evaluation in deep learning-based medical image analysis. Computer methods and programs in biomedicine, 198, p. 105796. Elsevier 10.1016/j.cmpb.2020.105796

Balsiger, Fabian; Jungo, Alain; Scheidegger, Olivier; Marty, Benjamin; Reyes, Mauricio (2020). Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks. In: Deeba, Farah; Johnson, Patricia; Würfl, Tobias; Ye, Jong Chul (eds.) Machine Learning for Medical Image Reconstruction. Lecture Notes in Computer Science: Vol. 12450 (pp. 60-69). Cham: Springer 10.1007/978-3-030-61598-7_6

Balsiger, Fabian; Jungo, Alain; Scheidegger, Olivier; Carlier, Pierre G; Reyes, Mauricio; Marty, Benjamin (2020). Spatially regularized parametric map reconstruction for fast magnetic resonance fingerprinting. Medical image analysis, 64(101741), p. 101741. Elsevier 10.1016/j.media.2020.101741

Ermis, Ekin; Jungo, Alain; Poel, Robert; Blatti-Moreno, Marcela; Meier, Raphael; Knecht, Urspeter; Aebersold, Daniel M.; Fix, Michael K.; Manser, Peter; Reyes, Mauricio; Herrmann, Evelyn (2020). Fully automated brain resection cavity delineation for radiation target volume definition in glioblastoma patients using deep learning. Radiation oncology, 15(1), p. 100. BioMed Central 10.1186/s13014-020-01553-z

Jungo, Alain; Balsiger, Fabian; Reyes, Mauricio (2020). Analyzing the Quality and Challenges of Uncertainty Estimations for Brain Tumor Segmentation. Frontiers in neuroscience, 14(282), p. 282. Frontiers Research Foundation 10.3389/fnins.2020.00282

Rüfenacht, Elias; Jungo, Alain; Ermis, Ekin; Hemmatazad, Hossein; Blatti, Marcela Judith; Aebersold, Daniel; Manser, Peter; Fix, Michael; Reyes, Mauricio; Herrmann, Evelyn (December 2019). Fully automated organs at risk delineation for brain tumor radiation planning in patients with glioblastoma using deep learning. Strahlentherapie und Onkologie, 195(12), p. 1149. Berlin Heidelberg: Springer

Suter, Yannick Raphael; Jungo, Alain; Rebsamen, Michael; Knecht, Urspeter; Herrmann, Evelyn; Wiest, Roland; Reyes, Mauricio (26 January 2019). Deep Learning Versus Classical Regression for Brain Tumor Patient Survival Prediction. Lecture notes in computer science, 11384, pp. 429-440. Cham: Springer 10.1007/978-3-030-11726-9_38

Rüfenacht, Elias; Jungo, Alain; Ermis, Ekin; Blatti-Moreno, Marcela; Hemmatazad, Hossein; Aebersold, Daniel M.; Fix, Michael; Manser, Peter; Reyes, Mauricio; Herrmann, Evelyn (2019). Organs at Risk Delineation for Brain Tumor Radiation Planning in Patients with Glioblastoma Using Deep Learning. International journal of radiation oncology, biology, physics, 105(1), E718-E719. Elsevier 10.1016/j.ijrobp.2019.06.892

Jungo, Alain; Reyes, Mauricio (2019). Assessing Reliability and Challenges of Uncertainty Estimations for Medical Image Segmentation. Lecture notes in computer science, 11765, pp. 48-56. Springer 10.1007/978-3-030-32245-8_6

Jungo, Alain; Meier, Raphael; Ermis, Ekin; Herrmann, Evelyn; Reyes, Mauricio (2018). Uncertainty-driven Sanity Check: Application to Postoperative Brain Tumor Cavity Segmentation. In: International Conference on Medical Imaging with Deep Learning. 04-06.07.2018.

Jungo, Alain; McKinley, Richard; Meier, Raphael; Knecht, Urspeter; Vera, Luis; Pérez-Beteta, Julián; Molina-García, David; Pérez-García, Víctor M.; Wiest, Roland; Reyes, Mauricio (2018). Towards uncertainty-assisted brain tumor segmentation and survival prediction. In: International Conference On Medical Image Computing & Computer Assisted Intervention. 10.1007/978-3-319-75238-9_40

Jungo, Alain; Meier, Raphael; Ermis, Ekin; Blatti-Moreno, Marcela; Herrmann, Evelyn; Wiest, Roland; Reyes, Mauricio (2018). On the Effect of Inter-observer Variability for a Reliable Estimation of Uncertainty of Medical Image Segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science: Vol. 11070 (pp. 682-690). Springer 10.1007/978-3-030-00928-1_77

Provide Feedback