McKinley, Richard

Up a level
Export as [feed] RSS
Group by: Date | Item Type | Refereed | No Grouping
Jump to: 2019 | 2018 | 2017 | 2016


Kuijf, Hugo J; Biesbroek, J Matthijs; de Bresser, Jeroen; Heinen, Rutger; Andermatt, Simon; Bento, Mariana; Berseth, Matt; Belyaev, Mikhail; Cardoso, M Jorge; Casamitjana, Adria; Collins, D Louis; Dadar, Mahsa; Georgiou, Achilleas; Ghafoorian, Mohsen; Jin, Dakai; Khademi, April; Knight, Jesse; Li, Hongwei; Llado, Xavier; Luna, Miguel; ... (2019). Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities; Results of the WMH Segmentation Challenge. IEEE transactions on medical imaging, 38(11), pp. 2556-2568. Institute of Electrical and Electronics Engineers IEEE 10.1109/TMI.2019.2905770

Rebsamen, Michael; Rummel, Christian; Mürner-Lavanchy, Ines; Reyes, M; Wiest, Roland; McKinley, Richard (2019). Surface-Based Brain Morphometry for the Prediction of Fluid Intelligence in the Neurocognitive Prediction Challenge 2019. In: Pohl, Kilian M.; Thompson, Wesley K.; Adeli, Ehsan; Linguraru, Marius George (eds.) Adolescent Brain Cognitive Development Neurocognitive Prediction. ABCD-NP 2019. Lecture notes in computer science: Vol. 11791 (pp. 26-34). Cham, Switzerland: Springer

McKinley, Richard; Marshall, Randolph (2019). Advanced MRI in acute stroke: Is the whole penumbra salvageable? Neurology, 92(21), pp. 983-984. American Academy of Neurology 10.1212/WNL.0000000000007535

Rebsamen, Michael; Knecht, Urspeter; Reyes, Mauricio; Wiest, Roland; Meier, Raphael; McKinley, Richard (2019). Divide and Conquer: Stratifying Training Data by Tumor Grade Improves Deep Learning-Based Brain Tumor Segmentation. Frontiers in neuroscience, 13, p. 1182. Frontiers Research Foundation 10.3389/fnins.2019.01182


Commowick, Olivier; Istace, Audrey; Kain, Michaël; Laurent, Baptiste; Leray, Florent; Simon, Mathieu; Pop, Sorina Camarasu; Girard, Pascal; Améli, Roxana; Ferré, Jean-Christophe; Kerbrat, Anne; Tourdias, Thomas; Cervenansky, Frédéric; Glatard, Tristan; Beaumont, Jérémy; Doyle, Senan; Forbes, Florence; Knight, Jesse; Khademi, April; Mahbod, Amirreza; ... (2018). Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure. Scientific Reports, 8(1), p. 13650. Nature Publishing Group 10.1038/s41598-018-31911-7

Pereira, Sérgio; Meier, Raphael; McKinley, Richard; Wiest, Roland; Alves, Victor; Silva, Carlos A; Reyes, Mauricio (2018). Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation. Medical image analysis, 44, pp. 228-244. Elsevier 10.1016/

Rummel, Christian; Aschwanden, Fabian; McKinley, Richard; Wagner, Franca; Salmen, Anke; Chan, Andrew; Wiest, Roland (2018). A Fully Automated Pipeline for Normative Atrophy in Patients with Neurodegenerative Disease. Frontiers in neurology, 8, p. 727. Frontiers Media S.A. 10.3389/fneur.2017.00727

McKinley, Richard; Hung, Fan; Wiest, Roland; Liebeskind, David S; Scalzo, Fabien (2018). A Machine Learning Approach to Perfusion Imaging With Dynamic Susceptibility Contrast MR. Frontiers in neurology, 9(717), p. 717. Frontiers Media S.A. 10.3389/fneur.2018.00717

Habegger, Simon; Wiest, Roland; Weder, Bruno; Mordasini, Pasquale; Gralla, Jan; Häni, Levin; Jung, Simon; Reyes, Mauricio; McKinley, Richard (2018). Relating Acute Lesion Loads to Chronic Outcome in Ischemic Stroke-An Exploratory Comparison of Mismatch Patterns and Predictive Modeling. Frontiers in neurology, 9(737), p. 737. Frontiers Media S.A. 10.3389/fneur.2018.00737

Winzeck, Stefan; Hakim, Arsany; McKinley, Richard; Pinto, José A A D S R; Alves, Victor; Silva, Carlos; Pisov, Maxim; Krivov, Egor; Belyaev, Mikhail; Monteiro, Miguel; Oliveira, Arlindo; Choi, Youngwon; Paik, Myunghee Cho; Kwon, Yongchan; Lee, Hanbyul; Kim, Beom Joon; Won, Joong-Ho; Islam, Mobarakol; Ren, Hongliang; Robben, David; ... (2018). ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI. Frontiers in neurology, 9(679), p. 679. Frontiers Media S.A. 10.3389/fneur.2018.00679

Pinto, Adriano; McKinley, Richard; Alves, Victor; Wiest, Roland; Silva, Carlos A; Reyes, Mauricio (2018). Stroke Lesion Outcome Prediction Based on MRI Imaging Combined With Clinical Information. Frontiers in neurology, 9(1060), p. 1060. Frontiers Media S.A. 10.3389/fneur.2018.01060


Jung, Simon; Wiest, Roland; Gralla, Jan; McKinley, Richard; Mattle, Heinrich; Liebeskind, David (2017). Relevance of the cerebral collateral circulation in ischaemic stroke: time is brain, but collaterals set the pace. Swiss medical weekly, 147(w14538), w14538. EMH Schweizerischer Ärzteverlag 10.4414/smw.2017.14538

Da Silva Mendes Pedrosa, Nuno Miguel; McKinley, Richard; Wiest, Roland; Slotboom, Johannes (2017). Improving labeling efficiency in automatic quality control of MRSI data. Magnetic resonance in medicine, 78(6), pp. 2399-2405. Wiley-Liss 10.1002/mrm.26618


Maier, Oskar; Menze, Bjoern H; von der Gablentz, Janina; Häni, Levin; Heinrich, Mattias P; Liebrand, Matthias; Winzeck, Stefan; Basit, Abdul; Bentley, Paul; Chen, Liang; Christiaens, Daan; Dutil, Francis; Egger, Karl; Feng, Chaolu; Glocker, Ben; Götz, Michael; Haeck, Tom; Halme, Hanna-Leena; Havaei, Mohammad; Iftekharuddin, Khan M; ... (2016). ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Medical image analysis, 35, pp. 250-269. Elsevier 10.1016/

Da Silva Mendes Pedrosa, Nuno Miguel; McKinley, Richard; Knecht, Urspeter; Wiest, Roland; Slotboom, Johannes (2016). Automatic quality control in clinical (1) H MRSI of brain cancer. NMR in biomedicine, 29(5), pp. 563-575. Wiley Interscience 10.1002/nbm.3470

McKinley, Richard; Häni, Levin; Gralla, Jan; El-Koussy, Marwan; Bauer, S; Arnold, Marcel; Fischer, Urs; Jung, Simon; Mattmann, Kaspar; Reyes, Mauricio; Wiest, Roland (2016). Fully automated stroke tissue estimation using random forest classifiers (FASTER). Journal of cerebral blood flow and metabolism, 37(8), pp. 2728-2741. Nature Publishing Group 10.1177/0271678X16674221

Provide Feedback