Up a level |
Adler, Joël; , ; Schmid, Jürg (2013). The class of algebraically closed p-semilattices is finitely axiomatizable. Algebra universalis, 70(3), pp. 287-308. Birkhäuser 10.1007/s00012-013-0251-2
Spinks, Matthew; Schmid, Jürg (2010). Lee classes for pseudocomplemented semilattices, revisited. Algebra universalis, 64(3-4), pp. 397-402. Basel: Birkhäuser 10.1007/s00012-011-0109-4
Adams, M.E.; Schmid, Jürg (2010). Free products of pseudocomplemented semilattices - revisited. Algebra universalis, 64(1-2), pp. 143-152. Basel: Birkhäuser 10.1007/s00012-010-0095-y
Adams, Michael E.; Schmid, Jürg (2008). Minimal Extensions of Bounded Distributive Lattices. Houston journal of mathematics, 34(4), pp. 1009-1024. Houston, Tex.: Dept. of Mathematics, University of Houston
Adams, Michael E.; Schmid, Jürg (2008). Pseudocomplemented Semilattices are Finite-to-Finite Relatively Universal. Algebra universalis, 58(3), pp. 303-333. Basel: Birkhäuser 10.1007/s00012-008-2071-3
Krebs, Michel; Schmid, Jürg (2008). Ordering the Order of a Distributive Lattice by Itself. Journal of logic and algebraic programming, 76(2), pp. 198-208. New York, N.Y.: North-Holland 10.1016/j.jlap.2008.02.003
Missaoui, Rokia; Schmid, Jürg (eds.) (2006). Formal Concept Analysis. 4th International Conference, ICFCA 2006, Dresden, Germany, Feburary 13-17, 2006, Proceedings. Lecture Notes in Computer Science: Vol. 3874. Heidelberg: Springer Verlag 10.1007/11671404
Adams, M. E.; Freese, Ralph; Nation, J. B.; Schmid, Jürg (1997). Maximal sublattices and Frattini sublattices of bounded lattices. Journal of the Australian Mathematical Society, 63(1), pp. 110-127. Cambridge University Press 10.1017/S1446788700000355
Schmid, Jürg (1982). Model companions of distributive p-algebras. The journal of symbolic logic, 47(3), pp. 680-688. Cambridge University Press 10.2307/2273597