Siegl, Petr

Up a level
Export as [feed] RSS
Group by: Date | Item Type | Refereed | No Grouping
Jump to: 2018 | 2017 | 2016 | 2015 | 2014


Freitas, Pedro; Siegl, Petr; Tretter, Christiane (2018). The damped wave equation with unbounded damping. Journal of differential equations, 264(12), pp. 7023-7054. Elsevier 10.1016/j.jde.2018.02.010

Cuenin, Jean-Claude; Siegl, Petr (2018). Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications. Letters in mathematical physics, 108(7), pp. 1757-1778. Springer 10.1007/s11005-018-1051-6

Krejčiřík, D.; Raymond, N.; Royer, J.; Siegl, Petr (2018). Reduction of dimension as a consequence of norm-resolvent convergence and applications. Mathematika, 64(2), pp. 406-429. Cambridge University Press 10.1112/S0025579318000013


Lotoreichik, Vladimir; Siegl, Petr (2017). Spectra of definite type in waveguide models. Proceedings of the American Mathematical Society, 145(3), pp. 1231-1246. American Mathematical Society 10.1090/proc/13316

Mityagin, Boris; Siegl, Petr; Viola, Joe (2017). Differential operators admitting various rates of spectral projection growth. Journal of functional analysis, 272(8), pp. 3129-3175. Elsevier 10.1016/j.jfa.2016.12.007

Bögli, Sabine; Siegl, Petr; Tretter, Christiane (2017). Approximations of spectra of Schrödinger operators with complex potentials on ℝd. Communications in partial differential equations, 42(7), pp. 1001-1041. Taylor & Francis 10.1080/03605302.2017.1330342

Siegl, Petr; Stampach, Frantisek (2017). Spectral analysis of non-self-adjoint Jacobi operator associated with Jacobian elliptic functions. Operators and Matrices, 11(4), pp. 901-928. Element 10.7153/oam-2017-11-64

Krejčiřík, D.; Raymond, N.; Royer, J.; Siegl, Petr (2017). Non-accretive Schrödinger operators and exponential decay of their eigenfunctions. Israel journal of mathematics, 221(2), pp. 779-802. Springer 10.1007/s11856-017-1574-z


Ibrogimov, Orif; Siegl, Petr; Tretter, Christiane (2016). Analysis of the essential spectrum of singular matrix differential operators. Journal of differential equations, 260(4), pp. 3881-3926. Elsevier 10.1016/j.jde.2015.10.050

Mityagin, B.; Siegl, Petr (2016). Root system of singular perturbations of the harmonic oscillator type operators. Letters in mathematical physics, 106(2), pp. 147-167. Springer 10.1007/s11005-015-0805-7

Siegl, Petr; Štampach, František (2016). On extremal properties of Jacobian elliptic functions with complex modulus. Journal of mathematical analysis and applications, 442(2), pp. 627-641. Elsevier 10.1016/j.jmaa.2016.05.008

Dohnal, Tomáš; Siegl, Petr (2016). Bifurcation of eigenvalues in nonlinear problems with antilinear symmetry. Journal of mathematical physics, 57(9), 093502. American Institute of Physics 10.1063/1.4962417


Krejčiřík, D.; Siegl, Petr; Tater, M.; Viola, J. (2015). Pseudospectra in non-Hermitian quantum mechanics. Journal of mathematical physics, 56(10), p. 103513. American Institute of Physics 10.1063/1.4934378

Hussein, A.; Krejčiřík, D.; Siegl, Petr (2015). Non-self-adjoint graphs. Transactions of the American Mathematical Society, 367(4), pp. 2921-2957. American Mathematical Society 10.1090/S0002-9947-2014-06432-5

Bureš, M.; Siegl, Petr (2015). Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law. Annals of physics, 354, pp. 316-327. Elsevier 10.1016/j.aop.2014.12.017


Freitas, Pedro; Siegl, Petr (2014). Spectra of graphene nanoribbons with armchair and zigzag boundary conditions. Reviews in mathematical physics, 26(10), 1450018, 32. World Scientific 10.1142/S0129055X14500184

Bögli, Sabine; Siegl, Petr (2014). Remarks on the convergence of pseudospectra. Integral equations and operator theory, 80(3), pp. 303-321. Birkhäuser 10.1007/s00020-014-2178-1

Siegl, Petr; Železný, Jakub; Krejčiřík, David (2014). On the similarity of Sturm-Liouville operators with non-Hermitian boundary conditions to self-adjoint and normal operators. Complex analysis and operator theory, 8(1), pp. 255-281. Birkhäuser 10.1007/s11785-013-0301-y

Provide Feedback