Cintula, Petr

Up a level
Export as [feed] RSS
Group by: Item Type | No Grouping
Number of items: 6.

Journal Article

Cintula, Petr; Diaconescu, Denisa; Metcalfe, George (2019). Skolemization and Herbrand Theorems for Lattice-Valued Logics. Theoretical computer science, 768, pp. 54-75. Elsevier 10.1016/j.tcs.2019.02.007

Cintula, Petr; Metcalfe, George (2010). Admissible rules in the implication-negation fragment of intuitionistic logic. Annals of pure and applied logic, 162(2), pp. 162-171. Amsterdam: Elsevier 10.1016/j.apal.2010.09.001

Cintula, Petr; Metcalfe, George (2009). Structural Completeness in Fuzzy Logics. Notre Dame journal of formal logic, 50(2), pp. 153-183. Durham, N.C.: Duke University Press 10.1215/00294527-2009-004

Book Section

Cintula, Petr; Metcalfe, George; Tokuda, Naomi (2022). Algebraic semantics for one-variable lattice-valued logics. In: Fernández-Duque, David; Palmigiano, Alessandra; Pinchinat, Sophie (eds.) Proceedings of AiML 2022. Advances in Modal Logic: Vol. 14 (pp. 237-257). College Publications

Metcalfe, George; Cintula, Petr; Diaconescu, Denisa (2015). Skolemization for Substructural Logics. In: Davis, Martin; Fehnker, Ansgar; McIver, Annabelle; Voronkov, Andrei (eds.) Logic for Programming, Artificial Intelligence, and Reasoning - Proceedings of LPAR 2015. Lecture Notes in Computer Science: Vol. 9450 (pp. 1-15). Springer 10.1007/978-3-662-48899-7_1

Cintula, Petr; Metcalfe, George (2013). Herbrand Theorems for Substructural Logics. In: McMillan, Ken; Middeldorp, Aart; Voronkov, Andrei (eds.) Logic for Programming, Artificial Intelligence, and Reasoning. Lecture Notes in Computer Science: Vol. 8312 (pp. 584-600). Springer 10.1007/978-3-642-45221-5_39

This list was generated on Thu Nov 21 12:41:14 2024 CET.
Provide Feedback