Engkvist, Ola

Up a level
Export as [feed] RSS
Group by: Item Type | No Grouping
Number of items: 9.

Thakkar, Amol; Chadimová, Veronika; Bjerrum, Esben Jannik; Engkvist, Ola; Reymond, Jean-Louis (2021). Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from AI driven retrosynthetic planning. Chemical Science, 12(9), pp. 3339-3349. The Royal Society of Chemistry 10.1039/D0SC05401A

Thakkar, Amol; Johansson, Simon; Jorner, Kjell; Buttar, David; Reymond, Jean-Louis; Engkvist, Ola (2021). Artificial intelligence and automation in computer aided synthesis planning. Reaction chemistry & engineering, 6(1), pp. 27-51. Royal Society of Chemistry 10.1039/D0RE00340A

Genheden, Samuel; Thakkar, Amol; Chadimová, Veronika; Reymond, Jean-Louis; Engkvist, Ola; Bjerrum, Esben (2020). AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. Journal of cheminformatics, 12(1) Springer 10.1186/s13321-020-00472-1

Arús-Pous, Josep; Patronov, Atanas; Bjerrum, Esben Jannik; Tyrchan, Christian; Reymond, Jean-Louis; Chen, Hongming; Engkvist, Ola (2020). SMILES-based deep generative scaffold decorator for de-novo drug design. Journal of cheminformatics, 12(1) Springer 10.1186/s13321-020-00441-8

Thakkar, Amol; Selmi, Nidhal; Reymond, Jean-Louis; Engkvist, Ola; Bjerrum, Esben Jannik (2020). “Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space. Journal of medicinal chemistry, 63(16), pp. 8791-8808. American Chemical Society 10.1021/acs.jmedchem.9b01919

Thakkar, Amol; Kogej, Thierry; Reymond, Jean-Louis; Engkvist, Ola; Bjerrum, Esben Jannik (2020). Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. Chemical Science, 11(1), pp. 154-168. The Royal Society of Chemistry 10.1039/C9SC04944D

Arús-Pous, Josep; Blaschke, Thomas; Ulander, Silas; Reymond, Jean-Louis; Chen, Hongming; Engkvist, Ola (2019). Exploring the GDB-13 chemical space using deep generative models. Journal of cheminformatics, 11(1), p. 20. Springer 10.1186/s13321-019-0341-z

Arús-Pous, Josep; Johansson, Simon Viet; Prykhodko, Oleksii; Bjerrum, Esben Jannik; Tyrchan, Christian; Reymond, Jean-Louis; Chen, Hongming; Engkvist, Ola (2019). Randomized SMILES strings improve the quality of molecular generative models. Journal of cheminformatics, 11(1) Springer 10.1186/s13321-019-0393-0

Tetko, Igor V.; Engkvist, Ola; Koch, Uwe; Reymond, Jean-Louis; Chen, Hongming (2016). BIGCHEM: Challenges and Opportunities for Big Data Analysis in Chemistry. Molecular informatics, 35(11-12), pp. 615-621. Wiley 10.1002/minf.201600073

This list was generated on Fri Jan 17 23:32:34 2025 CET.
Provide Feedback