Up a level |
Gamazo Tejero, Javier; Márquez Neila, Pablo; Kurmann, Thomas Kevin; Gallardo, Mathias; Zinkernagel, Martin; Wolf, Sebastian; Sznitman, Raphael (2023). Predicting OCT biological marker localization from weak annotations. Scientific Reports, 13(1), p. 19667. Nature Publishing Group 10.1038/s41598-023-47019-6
Gallardo, Mathias; Munk, Marion R.; Kurmann, Thomas Kevin; De Zanet, Sandro; Mosinska, Agata; Karagoz, Isıl Kutlutürk; Zinkernagel, Martin S.; Wolf, Sebastian; Sznitman, Raphael (2021). Machine learning can predict anti-VEGF treatment demand in a Treat-and-Extend regimen for patients with nAMD, DME and RVO associated ME. Ophthalmology retina, 5(7), pp. 604-624. Elsevier 10.1016/j.oret.2021.05.002
Du, Xiaofei; Kurmann, Thomas Kevin; Chang, Ping-Lin; Allan, Maximillian; Ourselin, Sebastian; Sznitman, Raphael; Kelly, John; Stoyanov, Danail (2018). Articulated Multi-Instrument 2D Pose Estimation Using Fully Convolutional Networks. IEEE transactions on medical imaging, 37(5), pp. 1276-1287. Institute of Electrical and Electronics Engineers IEEE 10.1109/TMI.2017.2787672
Gamazo Tejero, Angel Javier; Márquez Neila, Pablo; Kurmann, Thomas Kevin; Gallardo, Mathias; Zinkernagel, Martin Sebastian; Wolf, Sebastian; Sznitman, Raphael (February 2023). Deep-learning model to localize biological markers on OCT volumes from weak annotations (Submitted). In: ARVO Anual Meeting 2023.
Kurmann, Thomas Kevin; Márquez-Neila, Pablo; Yu, Siqing; Munk, Marion; Wolf, Sebastian; Sznitman, Raphael (2019). Fused Detection of Retinal Biomarkers in OCT Volumes. In: Shen, Dinggang; Liu, Tianming; Peters, Terry M.; Staib, Lawrence H.; Essert, Caroline; Zhou, Sean; Yap, Pew-Thian; Khan, Ali (eds.) MICCAI 2019. Lecture Notes in Computer Science: Vol. 11764 (pp. 255-263). Cham: Springer International Publishing 10.1007/978-3-030-32239-7_29
Kurmann, Thomas Kevin; Màrquez Neila, Pablo; Du, Xiaofei; Fua, Pascal; Stoyanov, Danail; Wolf, Sebastian; Sznitman, Raphael (18 October 2017). Simultaneous Recognition and Pose Estimation of Instruments in Minimally Invasive Surgery. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). Lecture Notes in Computer Science: Vol. 10434 (pp. 505-513). Springer 10.1007/978-3-319-66185-8_57