Wihler, Thomas

Up a level
Export as [feed] RSS
Group by: Item Type | No Grouping
Number of items: 25.

Journal Article

Schmutz, Lars; Wihler, Thomas (2019). The variable-order discontinuous Galerkin time stepping scheme for parabolic evolution problems is uniformly L∞-stable. Siam journal on numerical analysis, 57(1), pp. 293-319. Society for Industrial and Applied Mathematics 10.1137/17M1158835

Houston, Paul; Wihler, Thomas (2018). An hp-adaptive Newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems. Mathematics of computation, 87(314), pp. 2641-2674. American Mathematical Society 10.1090/mcom/3308

Holm, Bärbel; Wihler, Thomas (2018). Continuous and discontinuous Galerkin time stepping methods for nonlinear initial value problems with application to finite time blow-up. Numerische Mathematik, 138(3), pp. 767-799. Springer 10.1007/s00211-017-0918-2

Kyza, Irene; Metcalfe, Stephen Arthur; Wihler, Thomas (2018). hp-Adaptive Galerkin Time Stepping Methods for Nonlinear Initial Value Problems. Journal of scientific computing, 75(1), pp. 111-127. Springer 10.1007/s10915-017-0565-x

Baumann, Ramona; Wihler, Thomas (2018). A Nitsche finite element approach for elliptic problems with discontinuous Dirichlet boundary conditions. Computational methods in applied mathematics, 18(3), pp. 373-381. De Gruyter 10.1515/cmam-2017-0057

Amrein, Mario; Wihler, Thomas (2017). An adaptive space-time Newton-Galerkin approach for semilinear singularly perturbed parabolic evolution equations. IMA journal of numerical analysis, 37(4), pp. 2004-2019. Oxford University Press 10.1093/imanum/drw049

Amrein, Mario; Wihler, Thomas (2017). Adaptive pseudo-transient-continuation-Galerkin methods for semilinear elliptic partial differential equations. Numerical methods for partial differential equations, 33(6), pp. 2005-2022. Wiley 10.1002/num.22177

Wihler, Thomas (2017). A note on a norm-preserving continuous Galerkin time stepping scheme. Calcolo, 54(3), pp. 657-667. Springer 10.1007/s10092-016-0203-2

Wihler, Thomas (2017). Animal population social structure models. IMA journal of applied mathematics, 82(3), pp. 548-560. Oxford University Press 10.1093/imamat/hxx002

Baumann, Ramona; Wihler, Thomas (2017). A note on Sassenfeld matrices. Elemente der Mathematik, 72(2), pp. 62-65. European Mathematical Society 10.4171/EM/325

Amrein, Mario; Melenk, Jens Markus; Wihler, Thomas (2017). An hp-adaptive Newton-Galerkin finite element procedure for semilinear boundary value problems. Mathematical methods in the applied sciences, 40(6), pp. 1973-1985. Wiley 10.1002/mma.4113

Congreve, Scott Spencer; Wihler, Thomas (2017). Iterative Galerkin discretizations for strongly monotone problems. Journal of computational and applied mathematics, 311, pp. 457-472. Elsevier 10.1016/j.cam.2016.08.014

Houston, Paul; Wihler, Thomas (2016). Adaptive energy minimisation for hp-finite element methods. Computers and mathematics with applications, 71(4), pp. 977-990. Elsevier 10.1016/j.camwa.2016.01.002

Schötzau, Dominik; Schwab, Christoph; Wihler, Thomas (2015). hp-DGFEM for second-order mixed elliptic problems polyhedra. Mathematics of computation, 85(299), pp. 1051-1083. American Mathematical Society 10.1090/mcom/3062

Amrein, Mario; Wihler, Thomas (2015). Fully Adaptive Newton--Galerkin Methods for Semilinear Elliptic Partial Differential Equations. SIAM Journal on Scientific Computing, 37(4), A1637-A1657. Society for Industrial and Applied Mathematics 10.1137/140983537

Stamm, Benjamin; Wihler, Thomas (2015). A total variation discontinuous Galerkin approach for image restoration. International Journal of Numerical Analysis and Modeling, 12(1), pp. 81-93. Edmonton: Institute for Scientific Computing and Information

Wihler, Thomas; Bessire, Bänz; Stefanov, André (2014). Computing the entropy of a large matrix. Journal of physics. A - mathematical and theoretical, 47(24), p. 245201. Institute of Physics Publishing IOP 10.1088/1751-8113/47/24/245201

Amrein, Mario; Wihler, Thomas (2014). An adaptive Newton-method based on a dynamical systems approach. Communications in Nonlinear Science and Numerical Simulation, 19(9), pp. 2958-2973. Elsevier 10.1016/j.cnsns.2014.02.010

Fankhauser, Thomas; Wihler, Thomas; Wirz, Marcel (2014). The hp-adaptive FEM based on continuous Sobolev embeddings: isotropic refinements. Computers and mathematics with applications, 67(4), pp. 854-868. Elsevier 10.1016/j.camwa.2013.05.024

Wihler, Thomas; Congreve, Scott Spencer; Süli, E. (2013). Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: Strongly monotone quasi-Newtonian flows. IMA journal of numerical analysis, 33(4), pp. 1386-1415. Oxford University Press 10.1093/imanum/drs046

Book Section

Janssen, Bärbel; Wihler, Thomas (2015). Computational Comparison of Continuous and Discontinuous Galerkin Time-Stepping Methods for Nonlinear Initial Value Problems. In: Kirby, Robert M.; Berzins, Martin; Hesthaven, Jan S. (eds.) Spectral and High Order Methods for Partial Differential Equations -ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering: Vol. 106 (pp. 103-114). Springer 10.1007/978-3-319-19800-2_7

Schötzau, Dominik; Schwab, Christoph; Wihler, Thomas; Wirz, Marcel (2014). Exponential convergence of hp-DGFEM for elliptic problems in polyhedral domains. In: Azaïez, Mejdi; El Fekih, Henda; Hesthaven, Jan S. (eds.) Spectral and High Order Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering: Vol. 95 (pp. 57-73). Springer 10.1007/978-3-319-01601-6_4

Book

Wihler, Thomas (2012). Mathematik für Naturwissenschaften: Einführung in die Analysis [Textbook] . UTB: Vol. 3635. Stuttgart: Haupt Verlag

Wihler, Thomas (2012). Mathematik für Naturwissenschaften: Einführung in die Lineare Algebra [Textbook] . UTB: Vol. 3636. Stuttgart: Haupt Verlag

Report

Melenk, Jens M.; Wihler, Thomas (2014). A Posteriori Error Analysis of hp-FEM for singularly perturbed problems Cornell University Library

This list was generated on Mon Dec 30 18:21:56 2024 CET.
Provide Feedback