04 Faculty of Medicine > Faculty Institutions > sitem Center for Translational Medicine and Biomedical Entrepreneurship > Personalised Medicine

Up a level
Export as [feed] RSS
Jump to: 2021 | 2020 | 2019
Number of items at this level: 5.

2021

Zeng, Guodong; Schmaranzer, Florian; Degonda, Celia; Gerber, Nicolas; Gerber, Kate; Tannast, Moritz; Burger, Jürgen; Siebenrock, Klaus A.; Zheng, Guoyan; Lerch, Till (2021). MRI-based 3D models of the hip joint enables radiation-free computer-assisted planning of periacetabular osteotomy for treatment of hip dysplasia using deep learning for automatic segmentation. European journal of radiology open, 8, p. 100303. Elsevier 10.1016/j.ejro.2020.100303

2020

Zeng, Guodong; Schmaranzer, Florian; Lerch, Till; Boschung, Adam; Zheng, Guoyan; Burger, Jürgen; Gerber, Kate; Tannast, Moritz; Siebenrock, Klaus-Arno; Kim, Young-Jo; Novais, Eduardo N.; Gerber, Nicolas (1 September 2020). Entropy Guided Unsupervised Domain Adaptation for Cross-Center Hip Cartilage Segmentation from MRI. Lecture notes in computer science, 12261, pp. 447-456. Springer 10.1007/978-3-030-59710-8_44

Gerber, Nicolas; Carrillo, Fabio; Abegg, Daniel; Sutter, Reto; Zheng, Guoyan; Fürnstahl, Philipp (2020). Evaluation of CT-MR image registration methodologies for 3D preoperative planning of forearm surgeries. Journal of orthopaedic research, 38(9), pp. 1920-1930. Wiley 10.1002/jor.24641

Lerch, Till; Zeng, Guodong; Schmaranzer, Florian; Gerber, Nicolas; Siebenrock, Klaus-Arno; Tannast, Moritz (15 March 2020). Computer-assisted diagnosis of hip dysplasia and femoroacetabular impingement FAI using automatic reconstruction of MRI-based 3D models of the hip joint: a deep learning-based study. Insights into imaging, 11(34), p. 355. Springer

2019

Zeng, Guodong; Zheng, Guoyan (2019). Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical image analysis, 57, pp. 149-164. Elsevier 10.1016/j.media.2019.07.003

This list was generated on Mon Jan 25 04:48:35 2021 CET.
Provide Feedback