0000-0002-6286-9401

Up a level
Export as [feed] RSS
Group by: Date | Item Type | Refereed | No Grouping
Jump to: 2024 | 2023 | 2022 | 2021 | 2020 | 2019

2024

Tian, Meng; Zeng, Guodong; Zinkernagel, Martin; Tappeiner, Christoph; Wolf, Sebastian; Munk, Marion R (2024). Assessment of choriocapillaris and choroidal vascular changes in posterior uveitis using swept-source wide-field optical coherence tomography angiography. The British journal of ophthalmology, 108(3), pp. 386-390. BMJ Publishing Group 10.1136/bjo-2022-322209

Tian, Meng; Zeng, Guodong; Tappeiner, Christoph; Zinkernagel, Martin S; Wolf, Sebastian; Munk, Marion R (2024). Corrigendum: Comparison of indocyanine green angiography and swept-source wide-field optical coherence tomography angiography in posterior uveitis. Frontiers in medicine, 11 Frontiers 10.3389/fmed.2024.1426456

2023

Lerch, Till; Meier, Malin Kristin; Steppacher, Simon Damian; Gerber, Nicolas; Zeng, Guodong; Schmaranzer, Florian (June 2023). Pelvis MRI for cinematic rendering of Pelvis 3D models using fast T1 images and deep learning (Unpublished). In: Swiss Congress of Radiology (SCR), 2023. Davos. June 2023.

2022

Ruckli, Adrian Cyrill; Schmaranzer, Florian; Meier, Malin K; Lerch, Till D; Steppacher, Simon D; Tannast, Moritz; Zeng, Guodong; Burger, Jürgen; Siebenrock, Klaus A; Gerber, Nicolas; Gerber, Kate (2022). Automated quantification of cartilage quality for hip treatment decision support. International journal of computer assisted radiology and surgery, 17(11), pp. 2011-2021. Springer 10.1007/s11548-022-02714-z

Zhou, Qin; Wang, Runze; Zeng, Guodong; Fan, Heng; Zheng, Guoyan (2022). Towards bridging the distribution gap: Instance to Prototype Earth Mover's Distance for distribution alignment. Medical image analysis, 82(102607), p. 102607. Elsevier 10.1016/j.media.2022.102607

Lerch, Till; Meier, Malin Kristin; Steppacher, Simon Damian; Siebenrock, Klaus-Arno; Zeng, Guodong; Gerber, Nicolas; Schmaranzer, Florian (June 2022). Deep learning for automatic bone segmentation of the pelvis using MRI with T1 VIBE DIXON for FAI patients (Unpublished). In: SCR (Swiss Congress of Radiology).

Lerch, Till; Meier, Malin Kristin; Steppacher, Simon Damian; Zeng, Guodong; Schmaranzer, Florian (June 2022). Deep Learning for Automatic Bone Segmentation of the Pelvis using MRI with T1 VIBE DIXON for FAI Patients (Unpublished). In: ESSR Annual Scientific Meeting (European Society of Skeletal Radiology).

Meier, Malin Kristin; Zeng, Guodong; Boschung, A; Lerch, Till; Burger, Jürgen; Gerber, Nicolas; Siebenrock, Klaus-Arno; Tannast, Moritz; Steppacher, Simon Damian; Schmaranzer, Florian (June 2022). Deep Learning Based Fully Automated 3D Models of Hip Labrum based on MR arthrography are feasible and allow detection of differences in labrum volume among different hip deformities: A pilot study (Unpublished). In: ESSR Annual Scientific Meeting (European Society of Musculoskeletal Radiology).

Tian, Meng; Zeng, Guodong; Tappeiner, Christoph; Zinkernagel, Martin S; Wolf, Sebastian; Munk, Marion R (2022). Comparison of Indocyanine Green Angiography and Swept-Source Wide-Field Optical Coherence Tomography Angiography in Posterior Uveitis. Frontiers in medicine, 9, p. 853315. Frontiers 10.3389/fmed.2022.853315

2021

Hess, Hanspeter; Zumstein, M.; Dommer, L.; Schär, M.; Hayoz, A.; Zeng, Guodong; Ruckli, Adrian Cyrill; Burger, Jürgen; Gerber, Nicolas; Gerber, Kate (4 June 2021). Automatic shoulder bone segmentation from CT arthrograms based on deep learning. International Journal of Computer Assisted Radiology and Surgery, 16(S1), pp. 90-91. Springer

Meier, Malin Kristin; Zeng, Guodong; Boschung, Adam; Lerch, Till; Burger, Jürgen; Gerber, Nicolas; Gerber, Kate; Siebenrock, Klaus-Arno; Tannast, Moritz; Steppacher, Simon Damian; Schmaranzer, Florian (June 2021). Deep Learning Based Fully Automated 3D MRI Models Of Hip Cartilage And Labrum: A Pilot Study. In: EFORT Congress (Virtual).

Boschung, Adam; Lerch, Till; Hanke, Markus; Steppacher, Simon; Siebenrock, Klaus-Arno; Tannast, Moritz; Schmaranzer, Florian; Gerber, Nicolas; Zeng, Guodong (June 2021). Machine Learning Enables Fast Automatic Bone Segmentation For 3D MRI-Based Hip Impingement Detection Using T1 VIBE DIXON Of The Pelvis. In: EFORT Virtual Congress (European Federation of Orthopaedics and Traumatology).

Lerch, Till D.; Zwingelstein, Sébastien; Schmaranzer, Florian; Boschung, Adam; Hanke, Markus S.; Todorski, Inga A. S.; Steppacher, Simon D.; Gerber, Nicolas; Zeng, Guodong; Siebenrock, Klaus A.; Tannast, Moritz (2021). Posterior Extra-articular Ischiofemoral Impingement Can Be Caused by the Lesser and Greater Trochanter in Patients With Increased Femoral Version: Dynamic 3D CT–Based Hip Impingement Simulation of a Modified FABER Test. Orthopaedic journal of sports medicine, 9(5), p. 2325967121990629. Sage Publications 10.1177/2325967121990629

Zeng, Guodong; Schmaranzer, Florian; Lerch, Till D.; Boschung, Adam; Zheng, Guoyan; Burger, Jürgen; Gerber, Kate; Tannast, Moritz; Siebenrock, K.; Kim, Young-Jo; Novais, Eduardo; Gerber, Nicolas (23 April 2021). Entropy Guided Unsupervised Domain Adaptation for Cross-Center Hip Cartilage Segmentation from MRI (Unpublished). In: Bern Data Science Day 2021. 23.04.2021. 10.5281/zenodo.4767469

Zeng, Guodong; Schmaranzer, Florian; Degonda, Celia; Gerber, Nicolas; Gerber, Kate; Tannast, Moritz; Burger, Jürgen; Siebenrock, Klaus A.; Zheng, Guoyan; Lerch, Till (2021). MRI-based 3D models of the hip joint enables radiation-free computer-assisted planning of periacetabular osteotomy for treatment of hip dysplasia using deep learning for automatic segmentation. European journal of radiology open, 8, p. 100303. Elsevier 10.1016/j.ejro.2020.100303

Zeng, Guodong; Degonda, Celia; Boschung, Adam; Schmaranzer, Florian; Gerber, Nicolas; Siebenrock, Klaus-A.; Steppacher, Simon D.; Tannast, Moritz; Lerch, Till (2021). Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis of Intra- and Extra-articular Hip Impingement. Orthopaedic journal of sports medicine, 9(12), pp. 1-11. Sage Publications 10.1177/23259671211046916

2020

Lerch, T; Zeng, Guodong; Schmaranzer, F; Boschung, A; Gerber, Nicolas; Siebenrock, K-A; Tannast, M (November 2020). Fast Automatic Bone Segmentation Using Machine Learning for MRI Based Dynamic 3d Hip Impingement Simulation Based on t1 VIBE DIXON of the Pelvis in Routine MRI (Unpublished). In: RSNA Annual Meeting (Radiological Society of North America).

Lerch, Till; Schmaranzer, Florian; Boschung, Adam; Zeng, Guodong; Gerber, Nicolas; Siebenrock, Klaus-Arno; Tannast, Moritz (November 2020). Valgus and Increased Acetabular Version Can Aggravate Posterior Extraarticular Ischiofemoral Femoroacetabular Impingement in Patients With Increased Femoral Version in Dynamic Impingement Simulation (Unpublished). In: RSNA Annual Meeting (Radiological Society of North America).

Zeng, Guodong; Schmaranzer, Florian; Lerch, Till; Boschung, Adam; Zheng, Guoyan; Burger, Jürgen; Gerber, Kate; Tannast, Moritz; Siebenrock, Klaus-Arno; Kim, Young-Jo; Novais, Eduardo N.; Gerber, Nicolas (1 September 2020). Entropy Guided Unsupervised Domain Adaptation for Cross-Center Hip Cartilage Segmentation from MRI. Lecture notes in computer science, 12261, pp. 447-456. Springer 10.1007/978-3-030-59710-8_44

Lerch, T.; Zeng, G.; Schmaranzer, F.; Gerber, N.; Siebenrock, K.-A.; Tannast, M. (July 2020). RPS 1010a - Computer-assisted diagnosis of hip dysplasia and femoroacetabular impingement FAI using automatic reconstruction of MRI-based 3D models of the hip joint: a deep learning-based study. In: ECR (European Congress of Radiology) 11 (p. 355). Springer

2019

Schmaranzer, Florian; Helfenstein, Ronja; Zeng, Guodong; Lerch, Till; Novais, Eduardo N; Wylie, James D; Kim, Young-Jo; Siebenrock, Klaus A.; Tannast, Moritz; Zheng, Guoyan (2019). Automatic MRI-based Three-dimensional Models of Hip Cartilage Provide Improved Morphologic and Biochemical Analysis. Clinical orthopaedics and related research, 477(5), pp. 1036-1052. Wolters Kluwer 10.1097/CORR.0000000000000755

Provide Feedback