0000-0002-6616-3895

Up a level
Export as [feed] RSS
Group by: Date | Item Type | Refereed | No Grouping
Jump to: Yes

Yes

Scandella, Davide; Gallardo, Mathias; Kucur, Serife S; Sznitman, Raphael; Unterlauft, Jan Darius (2024). Visual Field Prognosis From Macula and Circumpapillary Spectral Domain Optical Coherence Tomography. Translational vision science & technology, 13(6) Association for Research in Vision and Ophthalmology 10.1167/tvst.13.6.10

Gamazo Tejero, Javier; Márquez Neila, Pablo; Kurmann, Thomas Kevin; Gallardo, Mathias; Zinkernagel, Martin; Wolf, Sebastian; Sznitman, Raphael (2023). Predicting OCT biological marker localization from weak annotations. Scientific Reports, 13(1), p. 19667. Nature Publishing Group 10.1038/s41598-023-47019-6

Hayoz, Michel; Hahne, Christopher; Gallardo, Mathias; Candinas, Daniel; Kurmann, Thomas; Allan, Maximilian; Sznitman, Raphael (2023). Learning how to robustly estimate camera pose in endoscopic videos. International journal of computer assisted radiology and surgery, 18(7), pp. 1185-1192. Springer 10.1007/s11548-023-02919-w

Gamazo Tejero, Angel Javier; Márquez Neila, Pablo; Kurmann, Thomas Kevin; Gallardo, Mathias; Zinkernagel, Martin Sebastian; Wolf, Sebastian; Sznitman, Raphael (February 2023). Deep-learning model to localize biological markers on OCT volumes from weak annotations (Submitted). In: ARVO Anual Meeting 2023.

Habra, Oussama; Gallardo, Mathias; Meyer zu Westram, Till; De Zanet, Sandro; Jaggi, Damian; Zinkernagel, Martin; Wolf, Sebastian; Sznitman, Raphael (2022). Evaluation of an Artificial Intelligence-based Detector of Sub- and Intra-Retinal Fluid on a large set of OCT volumes in AMD and DME. Ophthalmologica, 245(6), pp. 516-527. Karger 10.1159/000527345

Marafioti, Andrés; Hayoz, Michel; Gallardo, Mathias; Márquez Neila, Pablo; Wolf, Sebastian; Zinkernagel, Martin; Sznitman, Raphael (September 2021). CataNet: Predicting remaining cataract surgery duration. In: MICCAI 2021, 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Lecture Notes in Computer Science: Vol. 12904 (pp. 426-435). Springer 10.1007/978-3-030-87202-1_41

Gallardo, Mathias; Munk, Marion R.; Kurmann, Thomas Kevin; De Zanet, Sandro; Mosinska, Agata; Karagoz, Isıl Kutlutürk; Zinkernagel, Martin S.; Wolf, Sebastian; Sznitman, Raphael (2021). Machine learning can predict anti-VEGF treatment demand in a Treat-and-Extend regimen for patients with nAMD, DME and RVO associated ME. Ophthalmology retina, 5(7), pp. 604-624. Elsevier 10.1016/j.oret.2021.05.002

Provide Feedback