Vennemann, Bernhard Martin; Rösgen, Thomas; Heinisch, Paul Philipp; Obrist, Dominik (2017). Leaflet Kinematics of Mechanical and Bioprosthetic Aortic Valve Prostheses. ASAIO journal, 64(5), pp. 651-661. Lippincott 10.1097/MAT.0000000000000687
|
Text
00002480-900000000-98987.pdf - Published Version Available under License Publisher holds Copyright. Download (904kB) | Preview |
The hemodynamic performance of artificial aortic valves (AVs) and the probability for structural valve deterioration can be linked to the valve kinematics. Comparability among different studies is limited because of variations in the experimental setups and physiologic boundary conditions. This study presents results of kinematic measurements of bioprosthetic and mechanical AVs that were tested in an identical experimental setting such that they can be directly compared with each other. The kinematics of AVs is typically presented in the form of the geometric orifice area and its temporal evolution. These parameters cannot capture asynchronous leaflet motion and out-of-plane leaflet velocity. In this work, each leaflet was tracked individually for a more detailed understanding of the leaflet kinematics, asynchronous leaflet motion, and leaflet tip velocities. A bioprosthetic valve, Edwards INTUITY (EINT), and two mechanical valves, Medtronic ADVANTAGE (MADV) and a Lapeyre-Triflo FURTIVA (TFUR), were tested in a compliant model of the aortic root in a physiologic flow loop. TFUR and MADV opened alike with maximum leaflet tip velocities of 0.77 and 0.66 m/s, respectively. The opening of EINT showed significantly higher local in-plane leaflet velocities of more than 2 m/s. EINT and TFUR exhibited similar early and slow closure. MADV closed significantly later with increased velocity. TFUR had a median maximum leaflet tip velocity of 0.39 m/s during valve closure and that of MADV was 0.83 m/s, whereas EINT exhibited a median maximum local in-plane leaflet velocity of 0.37 m/s. EINT experienced leaflet fluttering during systole with a flapping frequency of 36 Hz.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
10 Strategic Research Centers > ARTORG Center for Biomedical Engineering Research > ARTORG Center - Cardiovascular Engineering (CVE) 04 Faculty of Medicine > Department of Cardiovascular Disorders (DHGE) > Clinic of Heart Surgery |
Graduate School: |
Graduate School for Cellular and Biomedical Sciences (GCB) |
UniBE Contributor: |
Vennemann, Bernhard Martin, Heinisch, Paul Philipp, Obrist, Dominik |
Subjects: |
600 Technology > 610 Medicine & health |
ISSN: |
1058-2916 |
Publisher: |
Lippincott |
Language: |
English |
Submitter: |
Daniela Huber |
Date Deposited: |
22 Jan 2018 16:48 |
Last Modified: |
27 Feb 2024 14:28 |
Publisher DOI: |
10.1097/MAT.0000000000000687 |
PubMed ID: |
29045279 |
BORIS DOI: |
10.7892/boris.107666 |
URI: |
https://boris.unibe.ch/id/eprint/107666 |