Burnier, Yannis; Ding, H.-T.; Kaczmarek, O.; Kruse, A.-L.; Laine, Mikko Sakari; Ohno, H.; Sandmeyer, H. (2017). Thermal quarkonium physics in the pseudoscalar channel. Journal of High Energy Physics, 2017(11) Springer 10.1007/JHEP11(2017)206
|
Text
10.1007-JHEP11(2017)206.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (1MB) | Preview |
The pseudoscalar correlator is an ideal lattice probe for thermal modifications to quarkonium spectra, given that it is not compromised by a contribution from a large transport peak. We construct a perturbative spectral function incorporating resummed thermal effects around the threshold and vacuum asymptotics above the threshold, and compare the corresponding imaginary-time correlators with continuum-extrapolated lattice data for quenched SU(3) at several temperatures. Modest differences are observed, which may originate from non-perturbative mass shifts or renormalization factors, however no resonance peaks are needed for describing the quenched lattice data for charmonium at and above T ∼ 1.1Tc ∼ 350 MeV. For comparison, in the bottomonium case a good description of the lattice data is obtained with a spectral function containing a single thermally broadened resonance peak.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
10 Strategic Research Centers > Albert Einstein Center for Fundamental Physics (AEC) 08 Faculty of Science > Institute of Theoretical Physics |
UniBE Contributor: |
Burnier, Yannis, Laine, Mikko Sakari |
Subjects: |
500 Science > 530 Physics |
ISSN: |
1029-8479 |
Publisher: |
Springer |
Language: |
English |
Submitter: |
Esther Fiechter |
Date Deposited: |
02 Mar 2018 14:28 |
Last Modified: |
12 Jun 2024 08:39 |
Publisher DOI: |
10.1007/JHEP11(2017)206 |
ArXiv ID: |
1709.07612 |
BORIS DOI: |
10.7892/boris.108223 |
URI: |
https://boris.unibe.ch/id/eprint/108223 |