Blood plasma traits associated with genetic merit for feed utilization in Holstein cows.

Dechow, C D; Baumrucker, C R; Bruckmaier, Rupert; Blum, Jürg (2017). Blood plasma traits associated with genetic merit for feed utilization in Holstein cows. Journal of dairy science, 100(10), pp. 8232-8238. American Dairy Science Association 10.3168/jds.2016-12502

[img] Text
1-s2.0-S0022030217306914-main.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (269kB)

The objective of this study was to evaluate the potential of selection for feed utilization on associated blood plasma metabolite and hormone traits. Dry matter intake (DMI) was recorded in 970 Holsteins from 11 commercial farms in Pennsylvania and used to derive dry matter efficiency (DME; fat-corrected milk yield/DMI), crude protein efficiency (CPE; protein yield/crude protein intake), and residual feed intake (RFI, defined as actual feed intake minus expected feed intake for maintenance and milk production, based on calculation of DMI adjusted for yield, body weight, and body condition score). Estimated breeding values for the 4 feed utilization traits (DMI, DME, CPE, and RFI), yield traits, body traits, and days open were standardized according to their respective genetic standard deviations. Up to 631 blood samples from 393 cows from 0 to 60 d in milk (DIM) were evaluated for blood plasma concentrations of glucose, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), creatinine, urea, growth hormone (GH), 3,5,3'-triiodothyronine (T3), and other parameters. Blood plasma traits were regressed on DIM, lactation number, herd, and standardized genetic merit. Cows with higher genetic merit for yield had significantly higher concentrations of GH, NEFA (milk and protein yield), and BHB (fat yield) from 31 to 60 DIM, but lower concentrations of glucose from 0 to 30 DIM, and T3 (milk yield, 0-60 DIM). The high GH-low glucose-low T3 concentration pattern was further accentuated for cows with genetic merit for enhanced feed efficiency (higher DME and lower RFI). Cows with a genetic tendency to be thin (low body condition score) also had elevated GH concentrations, but lower blood glucose, creatinine, and T3 concentrations. Those characteristics associated with enhanced feed efficiency (higher GH and lower glucose and T3 concentrations) were unfavorably associated with fertility, as indicated by elevated days open. Elevated NEFA and BHB concentrations were also associated with extended days open. Consideration of metabolic profiles when evaluating feed efficiency might be a method of maintaining high levels of health and reproductive fitness when selecting for feed efficiency.

Item Type:

Journal Article (Original Article)

Division/Institute:

05 Veterinary Medicine > Department of Clinical Research and Veterinary Public Health (DCR-VPH) > Veterinary Physiology
05 Veterinary Medicine > Department of Clinical Research and Veterinary Public Health (DCR-VPH)

UniBE Contributor:

Bruckmaier, Rupert, Blum, Jürg

Subjects:

500 Science > 590 Animals (Zoology)
600 Technology > 630 Agriculture

ISSN:

0022-0302

Publisher:

American Dairy Science Association

Language:

English

Submitter:

Hélène Elisabeth Meier

Date Deposited:

19 Jun 2018 17:51

Last Modified:

05 Dec 2022 15:12

Publisher DOI:

10.3168/jds.2016-12502

PubMed ID:

28755931

Uncontrolled Keywords:

feed efficiency hormone metabolite residual feed intake

BORIS DOI:

10.7892/boris.114687

URI:

https://boris.unibe.ch/id/eprint/114687

Actions (login required)

Edit item Edit item
Provide Feedback