Schmid, Sarah; Neuenschwander, Samuel; Pitteloud, Camille; Heckel, Gerald; Pajkovic, Mila; Arlettaz, Raphaël; Alvarez, Nadir (2018). Spatial and temporal genetic dynamics of the grasshopper Oedaleus decorus revealed by museum genomics. Ecology and evolution, 8(3), pp. 1480-1495. John Wiley & Sons, Inc. 10.1002/ece3.3699
|
Text
Schmid_et_al-2018-Ecology_and_Evolution.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (907kB) | Preview |
Analyzing genetic variation through time and space is important to identify key evolutionary and ecological processes in populations. However, using contemporary genetic data to infer the dynamics of genetic diversity may be at risk of a bias, as inferences are performed from a set of extant populations, setting aside unavailable, rare, or now extinct lineages. Here, we took advantage of new developments in next-generation sequencing to analyze the spatial and temporal genetic dynamics of the grasshopper Oedaleus decorus, a steppic Southwestern-Palearctic species. We applied a recently developed hybridization capture (hyRAD) protocol that allows retrieving orthologous sequences even from degraded DNA characteristic of museum specimens. We identified single nucleotide polymorphisms in 68 historical and 51 modern samples in order to (i) unravel the spatial genetic structure across part of the species distribution and (ii) assess the loss of genetic diversity over the past century in Swiss populations. Our results revealed (i) the presence of three potential glacial refugia spread across the European continent and converging spatially in the Alpine area. In addition, and despite a limited population sample size, our results indicate (ii) a loss of allelic richness in contemporary Swiss populations compared to historical populations, whereas levels of expected heterozygosities were not significantly different. This observation is compatible with an increase in the bottleneck magnitude experienced by central European populations of O. decorus following human-mediated land-use change impacting steppic habitats. Our results confirm that application of hyRAD to museum samples produces valuable information to study genetic processes across time and space.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Biology > Institute of Ecology and Evolution (IEE) 08 Faculty of Science > Department of Biology > Institute of Ecology and Evolution (IEE) > Population Genetics 08 Faculty of Science > Department of Biology > Institute of Ecology and Evolution (IEE) > Conservation Biology |
UniBE Contributor: |
Heckel, Gerald, Arlettaz, Raphaël |
Subjects: |
500 Science > 570 Life sciences; biology |
ISSN: |
2045-7758 |
Publisher: |
John Wiley & Sons, Inc. |
Language: |
English |
Submitter: |
Susanne Holenstein |
Date Deposited: |
23 Jul 2018 16:22 |
Last Modified: |
23 Dec 2022 09:48 |
Publisher DOI: |
10.1002/ece3.3699 |
BORIS DOI: |
10.7892/boris.118821 |
URI: |
https://boris.unibe.ch/id/eprint/118821 |