Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using comb LOVIT

Petrosyan, Tigran; Theodorou, Maria; Bamber, Jeff; Frenz, Martin; Jaeger, Michael (2018). Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using comb LOVIT. Photoacoustics, 10, pp. 20-30. Elsevier 10.1016/j.pacs.2018.02.001

[img]
Preview
Text
1-s2.0-S2213597917300423-main.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works (CC-BY-NC-ND).

Download (2MB) | Preview

Epi-style optoacoustic (OA) imaging provides flexibility by integrating the irradiation optics and ultrasound receiver, yet clutter generated by optical absorption near the probe obscures deep OA sources. Localised vibration tagging (LOVIT) retrieves OA signal from images that are acquired with and without a preceding ultrasonic pushing beam: Radiation force leads to a phase shift of signals coming from the focal area resulting in their visibility in a difference image, whereas clutter from outside the pushing beam is eliminated. Disadvantages of a single-focus approach are residual clutter from inside the pushing beam above the focus, and time-intensive scanning of the focus to retrieve a large field-of-view. To speed up acquisition, we propose to create multiple foci in parallel, forming comb-shaped ARF patterns. By subtracting OA images obtained with interleaved combs, this technique moreover results in greatly improved clutter reduction in phantoms mimicking optical, acoustic and elastic properties of breast tissue.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Institute of Applied Physics

UniBE Contributor:

Petrosyan, Tigran; Frenz, Martin and Jaeger, Michael

Subjects:

600 Technology > 620 Engineering

ISSN:

2213-5979

Publisher:

Elsevier

Language:

English

Submitter:

Franziska Stämpfli

Date Deposited:

24 Sep 2018 10:28

Last Modified:

24 Sep 2018 10:28

Publisher DOI:

10.1016/j.pacs.2018.02.001

BORIS DOI:

10.7892/boris.120073

URI:

https://boris.unibe.ch/id/eprint/120073

Actions (login required)

Edit item Edit item
Provide Feedback