Patient-Specific 3-D Magnetic Resonance Imaging-Based Dynamic Simulation of Hip Impingement and Range of Motion Can Replace 3-D Computed Tomography-Based Simulation for Patients With Femoroacetabular Impingement: Implications for Planning Open Hip Preservation Surgery and Hip Arthroscopy.

Lerch, Till; Degonda, Celia; Schmaranzer, Florian; Todorski, Inga; Cullmann-Bastian, Jennifer; Zheng, Guoyan; Siebenrock, Klaus A.; Tannast, Moritz (2019). Patient-Specific 3-D Magnetic Resonance Imaging-Based Dynamic Simulation of Hip Impingement and Range of Motion Can Replace 3-D Computed Tomography-Based Simulation for Patients With Femoroacetabular Impingement: Implications for Planning Open Hip Preservation Surgery and Hip Arthroscopy. The American journal of sports medicine, 47(12), pp. 2966-2977. Sage 10.1177/0363546519869681

[img] Text
0363546519869681.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (4MB)

BACKGROUND

Femoroacetabular impingement (FAI) is a complex 3-dimensional (3D) hip abnormality that can cause hip pain and osteoarthritis in young and active patients of childbearing age. Imaging is static and based on 2-dimensional radiographs or computed tomography (CT) scans. Recently, CT-based 3D impingement simulation was introduced for patient-specific assessments of hip deformities, whereas magnetic resonance imaging (MRI) offers a radiation-free alternative for surgical planning before hip arthroscopic surgery.

PURPOSE

To (1) investigate the difference between 3D models of the hip, (2) correlate the location of hip impingement and range of motion (ROM), and (3) correlate diagnostic parameters while comparing CT- and MRI-based osseous 3D models of the hip in symptomatic patients with FAI.

STUDY DESIGN

Cohort study (Diagnosis); Level of evidence, 2.

METHODS

The authors performed an institutional review board-approved comparative and retrospective study of 31 hips in 26 symptomatic patients with FAI. We compared CT- and MRI-based osseous 3D models of the hip in the same patients. 3D CT scans (slice thickness, 1 mm) of the entire pelvis and the distal femoral condyles were obtained. Preoperative MRI of the hip was performed including an axial-oblique T1 VIBE sequence (slice thickness, 1 mm) and 2 axial anisotropic (1.2 × 1.2 × 1 mm) T1 VIBE Dixon sequences of the entire pelvis and the distal femoral condyles. Threshold-based semiautomatic reconstruction of 3D models was performed using commercial software. CT- and MRI-based 3D models were compared with specifically developed software.

RESULTS

(1) The difference between MRI- and CT-based 3D models was less than 1 mm for the proximal femur and the acetabulum (median surface distance, 0.4 ± 0.1 mm and 0.4 ± 0.2 mm, respectively). (2) The correlation for ROM values was excellent (r = 0.99, P < .001) between CT and MRI. The mean absolute difference for flexion and extension was 1.9°± 1.5° and 2.6°± 1.9°, respectively. The location of impingement did not differ between CT- and MRI-based 3D ROM analysis in all 12 of 12 acetabular and 11 of 12 femoral clock-face positions. (3) The correlation for 6 diagnostic parameters was excellent (r = 0.98, P < .001) between CT and MRI. The mean absolute difference for inclination and anteversion was 2.0°± 1.8° and 1.0°± 0.8°, respectively.

CONCLUSION

Patient-specific and radiation-free MRI-based dynamic 3D simulation of hip impingement and ROM can replace CT-based 3D simulation for patients with FAI of childbearing age. On the basis of these excellent results, we intend to change our clinical practice, and we will use MRI-based 3D models for future clinical practice instead of CT-based 3D models. This allows radiation-free and patient-specific preoperative 3D impingement simulation for surgical planning and simulation of open hip preservation surgery and hip arthroscopic surgery.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Orthopaedic, Plastic and Hand Surgery (DOPH) > Clinic of Orthopaedic Surgery
04 Faculty of Medicine > Pre-clinic Human Medicine > Institute for Surgical Technology & Biomechanics ISTB [discontinued]

Graduate School:

Graduate School for Cellular and Biomedical Sciences (GCB)

UniBE Contributor:

Lerch, Till, Schmaranzer, Florian, Zheng, Guoyan, Siebenrock, Klaus-Arno, Tannast, Moritz

Subjects:

600 Technology > 610 Medicine & health
500 Science > 570 Life sciences; biology

ISSN:

1552-3365

Publisher:

Sage

Language:

English

Submitter:

Kathrin Aeschlimann

Date Deposited:

11 Oct 2019 08:19

Last Modified:

05 Dec 2022 15:31

Publisher DOI:

10.1177/0363546519869681

PubMed ID:

31486679

Additional Information:

This paper is also Celia Degonda's doctoral thesis.

Uncontrolled Keywords:

femoroacetabular impingement hip hip arthroscopic surgery magnetic resonance imaging

BORIS DOI:

10.7892/boris.133835

URI:

https://boris.unibe.ch/id/eprint/133835

Actions (login required)

Edit item Edit item
Provide Feedback