Baader, Sebastian; Feller, Peter; Lewark, Lukas; Zentner, Raphael (2019). Khovanov width and dealternation number of positive braid links. Mathematical research letters, 26(3), pp. 627-641. International Press 10.4310/MRL.2019.v26.n3.a1
Text
MRL-2019-0026-0003-a001.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (337kB) |
||
|
Text
1600-4534.pdf - Accepted Version Available under License Publisher holds Copyright. Download (289kB) | Preview |
We give asymptotically sharp upper bounds for the Khovanov width and the dealternation number of positive braid links, in terms of their crossing number. The same braid-theoretic technique, combined with Ozsváth, Stipsicz, and Szabó’s Upsilon invariant, allows us to determine the exact cobordism distance between torus knots with braid index two and six.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics |
UniBE Contributor: |
Baader, Sebastian, Feller, Peter, Lewark, Lukas Pascal |
Subjects: |
500 Science > 510 Mathematics |
ISSN: |
1073-2780 |
Publisher: |
International Press |
Language: |
English |
Submitter: |
Michel Arthur Bik |
Date Deposited: |
19 Feb 2020 08:00 |
Last Modified: |
05 Dec 2022 15:36 |
Publisher DOI: |
10.4310/MRL.2019.v26.n3.a1 |
ArXiv ID: |
1610.04534 |
BORIS DOI: |
10.7892/boris.139929 |
URI: |
https://boris.unibe.ch/id/eprint/139929 |