Niehus, Malwin; Hoferichter, Martin; Kubis, Bastian; Ruiz de Elvira, Jacobo (2021). Two-Loop Analysis of the Pion Mass Dependence of the ρ Meson. Physical review letters, 126(10), p. 102002. American Physical Society 10.1103/PhysRevLett.126.102002
|
Text
PhysRevLett.126.102002.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (351kB) | Preview |
Analyzing the pion mass dependence of ππ scattering phase shifts beyond the low-energy region requires the unitarization of the amplitudes from chiral perturbation theory. In the two-flavor theory, unitarization via the inverse-amplitude method (IAM) can be justified from dispersion relations, which is therefore expected to provide reliable predictions for the pion mass dependence of results from lattice QCD calculations. In this work, we provide compact analytic expression for the two-loop partial-wave amplitudes for J=0, 1, 2 required for the IAM at subleading order. To analyze the pion mass dependence of recent lattice QCD results for the P wave, we develop a fit strategy that for the first time allows us to perform stable two-loop IAM fits and assess the chiral convergence of the IAM approach. While the comparison of subsequent orders suggests a breakdown scale not much below the ρ mass, a detailed understanding of the systematic uncertainties of lattice QCD data is critical to obtain acceptable fits, especially at larger pion masses.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
10 Strategic Research Centers > Albert Einstein Center for Fundamental Physics (AEC) 08 Faculty of Science > Institute of Theoretical Physics |
UniBE Contributor: |
Hoferichter, Martin, Ruiz de Elvira Carrascal, Jacobo |
Subjects: |
500 Science > 530 Physics |
ISSN: |
0031-9007 |
Publisher: |
American Physical Society |
Language: |
English |
Submitter: |
Esther Fiechter |
Date Deposited: |
15 Apr 2021 09:53 |
Last Modified: |
05 Dec 2022 15:49 |
Publisher DOI: |
10.1103/PhysRevLett.126.102002 |
ArXiv ID: |
2009.04479 |
BORIS DOI: |
10.48350/154464 |
URI: |
https://boris.unibe.ch/id/eprint/154464 |