Wildrick, K.; Zürcher, T. (2012). Space filling with metric measure spaces. Mathematische Zeitschrift, 270(1-2), pp. 103-131. Berlin: Springer 10.1007/s00209-010-0787-1
|
Text
s00209-010-0787-1.pdf - Published Version Available under License Publisher holds Copyright. Download (400kB) | Preview |
We show a sharp relationship between the existence of space filling mappings with an upper gradient in a Lorentz space and the Poincaré inequality in a general metric setting. As key examples, we consider these phenomena in Cantor diamond spaces and the Heisenberg groups.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics |
UniBE Contributor: |
Wildrick, Kevin Michael, Zürcher, Thomas |
ISSN: |
0025-5874 |
Publisher: |
Springer |
Language: |
English |
Submitter: |
Factscience Import |
Date Deposited: |
04 Oct 2013 14:41 |
Last Modified: |
05 Dec 2022 14:13 |
Publisher DOI: |
10.1007/s00209-010-0787-1 |
Web of Science ID: |
000299125000005 |
BORIS DOI: |
10.48350/17010 |
URI: |
https://boris.unibe.ch/id/eprint/17010 (FactScience: 224726) |