Describing the relationships among meat quality traits in domestic turkey (Meleagris gallopavo) populations.

Hiscock, Heather M; Leishman, Emily M; Vanderhout, Ryley J; Adams, Sarah M; Mohr, Jeff; Wood, Benjamin J; Baes, Christine F; Barbut, Shai (2022). Describing the relationships among meat quality traits in domestic turkey (Meleagris gallopavo) populations. Poultry science, 101(10), p. 102055. Elsevier 10.1016/j.psj.2022.102055

[img]
Preview
Text
1-s2.0-S0032579122003467-main.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works (CC-BY-NC-ND).

Download (295kB) | Preview

The presence of meat quality defects is increasing in the turkey industry. While the main strategy for mitigating these issues is through improved housing, management, and slaughter conditions, it may be possible to incorporate meat quality into a turkey breeding strategy with the intent to improve meat quality. Before this can occur, it is important to describe the current state of turkey meat quality as well as the correlations among the different meat quality traits and important production traits. The main objective of the present study was to provide a descriptive analysis of 8 different meat quality traits for turkey breast meat from 3 different purebred lines (A, B, and C), and their correlation with a selection of production traits. Using a total of 7,781 images, the breast meat (N = 590-3,892 birds depending on trait) was evaluated at 24 h postmortem for color (L*, a*, b*), pH, and physiochemical characteristics (drip loss, cooking loss, shear force). Descriptive statistics (mean and standard deviation) and Pearson correlations were computed to describe the relationships among traits within each genetic line. A one-factor ANOVA and post hoc t-test were conducted for each trait and between each of the genetic lines. We found significant differences between genetic lines for some color traits (L* and a*), pHinitial, drip loss, and cooking loss. The lightest line in weight (line B) had meat that was the lightest (L*) in color. The heaviest line (line C) had meat that was less red (a*) with a higher pHinitial and greater cooking loss. Unfavorable correlations between production traits and meat quality were also found for each of the genetic lines where increases in production (e.g., body weight, growth rate) resulted in meat that was lighter and redder in color and in some cases (line B and C), with an increased moisture loss. The results of this study provide an important benchmark for turkey meat quality in purebred lines and provide an updated account of the relationships between key production traits and meat quality. Although the magnitude of these correlations is low, their cumulative effect on meat quality can be more significant especially with continued selection pressure on growth and yield.

Item Type:

Journal Article (Original Article)

Division/Institute:

05 Veterinary Medicine > Department of Clinical Research and Veterinary Public Health (DCR-VPH) > Institute of Genetics

UniBE Contributor:

Baes, Christine Francoise

Subjects:

500 Science > 590 Animals (Zoology)
600 Technology > 630 Agriculture

ISSN:

0032-5791

Publisher:

Elsevier

Language:

English

Submitter:

Pubmed Import

Date Deposited:

17 Aug 2022 12:22

Last Modified:

05 Dec 2022 16:22

Publisher DOI:

10.1016/j.psj.2022.102055

PubMed ID:

35973350

Uncontrolled Keywords:

color cooking loss drip loss genetics pH

BORIS DOI:

10.48350/172111

URI:

https://boris.unibe.ch/id/eprint/172111

Actions (login required)

Edit item Edit item
Provide Feedback