Tracking unlabeled cancer cells imaged with low resolution in wide migration chambers via U-NET class-1 probability (pseudofluorescence).

Antonello, Paola; Morone, Diego; Pirani, Edisa; Uguccioni, Mariagrazia; Thelen, Marcus; Krause, Rolf; Pizzagalli, Diego Ulisse (2023). Tracking unlabeled cancer cells imaged with low resolution in wide migration chambers via U-NET class-1 probability (pseudofluorescence). Journal of biological engineering, 17(1), p. 5. 10.1186/s13036-022-00321-9

[img]
Preview
Text
s13036-022-00321-9.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (2MB) | Preview

Cell migration is a pivotal biological process, whose dysregulation is found in many diseases including inflammation and cancer. Advances in microscopy technologies allow now to study cell migration in vitro, within engineered microenvironments that resemble in vivo conditions. However, to capture an entire 3D migration chamber for extended periods of time and with high temporal resolution, images are generally acquired with low resolution, which poses a challenge for data analysis. Indeed, cell detection and tracking are hampered due to the large pixel size (i.e., cell diameter down to 2 pixels), the possible low signal-to-noise ratio, and distortions in the cell shape due to changes in the z-axis position. Although fluorescent staining can be used to facilitate cell detection, it may alter cell behavior and it may suffer from fluorescence loss over time (photobleaching).Here we describe a protocol that employs an established deep learning method (U-NET), to specifically convert transmitted light (TL) signal from unlabeled cells imaged with low resolution to a fluorescent-like signal (class 1 probability). We demonstrate its application to study cancer cell migration, obtaining a significant improvement in tracking accuracy, while not suffering from photobleaching. This is reflected in the possibility of tracking cells for three-fold longer periods of time. To facilitate the application of the protocol we provide WID-U, an open-source plugin for FIJI and Imaris imaging software, the training dataset used in this paper, and the code to train the network for custom experimental settings.

Item Type:

Journal Article (Original Article)

Graduate School:

Graduate School for Cellular and Biomedical Sciences (GCB)

ISSN:

1754-1611

Language:

English

Submitter:

Pubmed Import

Date Deposited:

30 Jan 2023 13:51

Last Modified:

05 Feb 2023 02:25

Publisher DOI:

10.1186/s13036-022-00321-9

PubMed ID:

36694208

Uncontrolled Keywords:

Brightfield microscopy Cell migration Cell tracking

BORIS DOI:

10.48350/177869

URI:

https://boris.unibe.ch/id/eprint/177869

Actions (login required)

Edit item Edit item
Provide Feedback