Orth, Ulrich; Meier, Laurenz L.; Bühler, Janina Larissa; Dapp, Laura C.; Krauss, Samantha; Messerli, Denise; Robins, Richard W. (2024). Effect size guidelines for cross-lagged effects. Psychological methods, 29(2), pp. 421-433. American Psychological Association 10.1037/met0000499
|
Text
Orth_et_al_2022_PM.pdf - Accepted Version Available under License Publisher holds Copyright. Download (466kB) | Preview |
|
Text
Orth_et_al_2022_PM.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (537kB) |
Cross-lagged models are by far the most commonly used method to test the prospective effect of one construct on another, yet there are no guidelines for interpreting the size of cross-lagged effects. This research aims to establish empirical benchmarks for cross-lagged effects, focusing on the cross-lagged panel model (CLPM) and the random intercept cross-lagged panel model (RI-CLPM). We drew a quasirepresentative sample of studies published in four subfields of psychology (i.e., developmental, social–personality, clinical, and industrial–organizational). The dataset included 1,028 effect sizes for the CLPM and 302 effect sizes for the RI-CLPM, based on data from 174 samples. For the CLPM, the 25th, 50th, and 75th percentiles of the distribution corresponded to cross-lagged effect sizes of .03, .07, and .12, respectively. For the RI-CLPM, the corresponding values were .02, .05, and .11. Effect sizes did not differ significantly between the CLPM and RI-CLPM. Moreover, effect sizes did not differ significantly across subfields and were not moderated by design characteristics. However, effect sizes were moderated by the concurrent correlation between the constructs and the stability of the predictor. Based on the findings, we propose to use .03 (small effect), .07 (medium effect), and .12 (large effect) as benchmark values when interpreting the size of cross-lagged effects, for both the CLPM and RI-CLPM. In addition to aiding in the interpretation of results, the present findings will help researchers plan studies by providing information needed to conduct power analyses and estimate minimally required sample sizes.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
07 Faculty of Human Sciences > Institute of Psychology 07 Faculty of Human Sciences > Institute of Psychology > Developmental Psychology |
UniBE Contributor: |
Orth, Ulrich, Bühler, Janina Larissa, Dapp, Laura Claude, Krauss, Samantha |
Subjects: |
100 Philosophy > 150 Psychology |
ISSN: |
1082-989X |
Publisher: |
American Psychological Association |
Language: |
English |
Submitter: |
Ulrich Orth |
Date Deposited: |
29 Mar 2023 08:56 |
Last Modified: |
14 May 2024 10:35 |
Publisher DOI: |
10.1037/met0000499 |
PubMed ID: |
35737548 |
BORIS DOI: |
10.48350/180827 |
URI: |
https://boris.unibe.ch/id/eprint/180827 |