Tanveer, Waqas; Ridwan-Pramana, Angela; Molinero-Mourelle, Pedro; Forouzanfar, Tymour (2023). Applications of CAD/CAM Technology for Craniofacial Implants Placement and Manufacturing of Auricular Prostheses-Systematic Review. Journal of clinical medicine, 12(18) MDPI 10.3390/jcm12185950
|
Text
jcm-12-05950-v2.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (1MB) | Preview |
This systematic review was aimed at gathering the clinical and technical applications of CAD/CAM technology for craniofacial implant placement and processing of auricular prostheses based on clinical cases. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, an electronic data search was performed. Human clinical studies utilizing digital planning, designing, and printing systems for craniofacial implant placement and processing of auricular prostheses for prosthetic rehabilitation of auricular defects were included. Following a data search, a total of 36 clinical human studies were included, which were digitally planned and executed through various virtual software to rehabilitate auricular defects. Preoperative data were collected mainly through computed tomography scans (CT scans) (55 cases); meanwhile, the most common laser scanners were the 3dMDface System (3dMD LLC, Atlanta, Georgia, USA) (6 cases) and the 3 Shape scanner (3 Shape, Copenhagen, Denmark) (6 cases). The most common digital design software are Mimics Software (Mimics Innovation Suite, Materialize, Leuven, Belgium) (18 cases), Freeform software (Freeform, NC, USA) (13 cases), and 3 Shape software (3 Shape, Copenhagen, Denmark) (12 cases). Surgical templates were designed and utilized in 35 cases to place 88 craniofacial implants in auricular defect areas. The most common craniofacial implants were Vistafix craniofacial implants (Entific Medical Systems, Goteborg, Sweden) in 22 cases. A surgical navigation system was used to place 20 craniofacial implants in the mastoid bone. Digital applications of CAD/CAM technology include, but are not limited to, study models, mirrored replicas of intact ears, molds, retentive attachments, customized implants, substructures, and silicone prostheses. The included studies demonstrated a predictable clinical outcome, reduced the patient's visits, and completed the prosthetic rehabilitation in reasonable time and at reasonable cost. However, equipment costs and trained technical staff were highlighted as possible limitations to the use of CAD/CAM systems.
Item Type: |
Journal Article (Review Article) |
---|---|
Division/Institute: |
04 Faculty of Medicine > School of Dental Medicine > Department of Reconstructive Dentistry and Gerodontology |
UniBE Contributor: |
Molinero Mourelle, Pedro |
Subjects: |
600 Technology > 610 Medicine & health |
ISSN: |
2077-0383 |
Publisher: |
MDPI |
Language: |
English |
Submitter: |
Pubmed Import |
Date Deposited: |
02 Oct 2023 15:00 |
Last Modified: |
04 Oct 2023 19:23 |
Publisher DOI: |
10.3390/jcm12185950 |
PubMed ID: |
37762891 |
Uncontrolled Keywords: |
auricular prosthesis craniofacial implants digital planning guided implant surgery surgical template |
BORIS DOI: |
10.48350/186760 |
URI: |
https://boris.unibe.ch/id/eprint/186760 |