Global, regional, and national burden of heatwave-related mortality from 1990 to 2019: A three-stage modelling study.

Zhao, Qi; Li, Shanshan; Ye, Tingting; Wu, Yao; Gasparrini, Antonio; Tong, Shilu; Urban, Aleš; Vicedo-Cabrera, Ana Maria; Tobias, Aurelio; Armstrong, Ben; Royé, Dominic; Lavigne, Eric; de'Donato, Francesca; Sera, Francesco; Kan, Haidong; Schwartz, Joel; Pascal, Mathilde; Ryti, Niilo; Goodman, Patrick; Saldiva, Paulo Hilario Nascimento; ... (2024). Global, regional, and national burden of heatwave-related mortality from 1990 to 2019: A three-stage modelling study. PLoS medicine, 21(5), e1004364. Public Library of Science 10.1371/journal.pmed.1004364

[img]
Preview
Text
journal.pmed.1004364.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (3MB) | Preview

BACKGROUND

The regional disparity of heatwave-related mortality over a long period has not been sufficiently assessed across the globe, impeding the localisation of adaptation planning and risk management towards climate change. We quantified the global mortality burden associated with heatwaves at a spatial resolution of 0.5°×0.5° and the temporal change from 1990 to 2019.

METHODS AND FINDINGS

We collected data on daily deaths and temperature from 750 locations of 43 countries or regions, and 5 meta-predictors in 0.5°×0.5° resolution across the world. Heatwaves were defined as location-specific daily mean temperature ≥95th percentiles of year-round temperature range with duration ≥2 days. We first estimated the location-specific heatwave-mortality association. Secondly, a multivariate meta-regression was fitted between location-specific associations and 5 meta-predictors, which was in the third stage used with grid cell-specific meta-predictors to predict grid cell-specific association. Heatwave-related excess deaths were calculated for each grid and aggregated. During 1990 to 2019, 0.94% (95% CI: 0.68-1.19) of deaths [i.e., 153,078 cases (95% eCI: 109,950-194,227)] per warm season were estimated to be from heatwaves, accounting for 236 (95% eCI: 170-300) deaths per 10 million residents. The ratio between heatwave-related excess deaths and all premature deaths per warm season remained relatively unchanged over the 30 years, while the number of heatwave-related excess deaths per 10 million residents per warm season declined by 7.2% per decade in comparison to the 30-year average. Locations with the highest heatwave-related death ratio and rate were in Southern and Eastern Europe or areas had polar and alpine climates, and/or their residents had high incomes. The temporal change of heatwave-related mortality burden showed geographic disparities, such that locations with tropical climate or low incomes were observed with the greatest decline. The main limitation of this study was the lack of data from certain regions, e.g., Arabian Peninsula and South Asia.

CONCLUSIONS

Heatwaves were associated with substantial mortality burden that varied spatiotemporally over the globe in the past 30 years. The findings indicate the potential benefit of governmental actions to enhance health sector adaptation and resilience, accounting for inequalities across communities.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Pre-clinic Human Medicine > Institute of Social and Preventive Medicine (ISPM)

UniBE Contributor:

Vicedo Cabrera, Ana Maria

Subjects:

600 Technology > 610 Medicine & health
300 Social sciences, sociology & anthropology > 360 Social problems & social services

ISSN:

1549-1277

Publisher:

Public Library of Science

Funders:

[4] Swiss National Science Foundation

Language:

English

Submitter:

Pubmed Import

Date Deposited:

15 May 2024 15:22

Last Modified:

13 Jun 2024 18:09

Publisher DOI:

10.1371/journal.pmed.1004364

PubMed ID:

38743771

BORIS DOI:

10.48350/196788

URI:

https://boris.unibe.ch/id/eprint/196788

Actions (login required)

Edit item Edit item
Provide Feedback