Allele Frequencies of Genetic Variants Associated with Varroa Drone Brood Resistance (DBR) in Apis mellifera Subspecies across the European Continent.

Lefebre, Regis; De Smet, Lina; Tehel, Anja; Paxton, Robert J; Bossuyt, Emma; Verbeke, Wim; van Dooremalen, Coby; Ulgezen, Zeynep N; van den Bosch, Trudy; Schaafsma, Famke; Valkenburg, Dirk-Jan; Dall'Olio, Raffaele; Alaux, Cedric; Dezmirean, Daniel S; Giurgiu, Alexandru I; Capela, Nuno; Simões, Sandra; Sousa, José Paulo; Bencsik, Martin; McVeigh, Adam; ... (2024). Allele Frequencies of Genetic Variants Associated with Varroa Drone Brood Resistance (DBR) in Apis mellifera Subspecies across the European Continent. Insects, 15(6) MDPI 10.3390/insects15060419

[img]
Preview
Text
insects-15-00419-v2.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (3MB) | Preview

Implementation of marker-assisted selection (MAS) in modern beekeeping would improve sustainability, especially in breeding programs aiming for resilience against the parasitic mite Varroa destructor. Selecting honey bee colonies for natural resistance traits, such as brood-intrinsic suppression of varroa mite reproduction, reduces the use of chemical acaricides while respecting local adaptation. In 2019, eight genomic variants associated with varroa non-reproduction in drone brood were discovered in a single colony from the Amsterdam Water Dune population in the Netherlands. Recently, a new study tested the applicability of these eight genetic variants for the same phenotype on a population-wide scale in Flanders, Belgium. As the properties of some variants varied between the two studies, one hypothesized that the difference in genetic ancestry of the sampled colonies may underly these contribution shifts. In order to frame this, we determined the allele frequencies of the eight genetic variants in more than 360 Apis mellifera colonies across the European continent and found that variant type allele frequencies of these variants are primarily related to the A. mellifera subspecies or phylogenetic honey bee lineage. Our results confirm that population-specific genetic markers should always be evaluated in a new population prior to using them in MAS programs.

Item Type:

Journal Article (Original Article)

Division/Institute:

05 Veterinary Medicine > Department of Clinical Research and Veterinary Public Health (DCR-VPH)
05 Veterinary Medicine > Department of Clinical Research and Veterinary Public Health (DCR-VPH) > Institute of Bee Health

UniBE Contributor:

Beaurepaire, Alexis, Moro, Arrigo

Subjects:

500 Science > 590 Animals (Zoology)
600 Technology > 630 Agriculture

ISSN:

2075-4450

Publisher:

MDPI

Language:

English

Submitter:

Pubmed Import

Date Deposited:

27 Jun 2024 10:33

Last Modified:

27 Jun 2024 10:43

Publisher DOI:

10.3390/insects15060419

PubMed ID:

38921134

Uncontrolled Keywords:

genetic markers marker-assisted selection suppressed mite reproduction varroa mite non-reproduction western honey bee

BORIS DOI:

10.48350/198146

URI:

https://boris.unibe.ch/id/eprint/198146

Actions (login required)

Edit item Edit item
Provide Feedback