Gait analysis in normal and spinal contused mice using the TreadScan system

Beare, Jason E; Morehouse, Johnny R; DeVries, William H; Enzmann, Gaby U; Burke, Darlene A; Magnuson, David S K; Whittemore, Scott R (2009). Gait analysis in normal and spinal contused mice using the TreadScan system. Journal of neurotrauma, 26(11), pp. 2045-56. New York, N.Y.: M.A. Liebert 10.1089/neu.2009.0914

Full text not available from this repository. (Request a copy)

Advances in spinal cord injury (SCI) research are dependent on quality animal models, which in turn rely on sensitive outcome measures able to detect functional differences in animals following injury. To date, most measurements of dysfunction following SCI rely either on the subjective rating of observers or the slow throughput of manual gait assessment. The present study compares the gait of normal and contusion-injured mice using the TreadScan system. TreadScan utilizes a transparent treadmill belt and a high-speed camera to capture the footprints of animals and automatically analyze gait characteristics. Adult female C57Bl/6 mice were introduced to the treadmill prior to receiving either a standardized mild, moderate, or sham contusion spinal cord injury. TreadScan gait analyses were performed weekly for 10 weeks and compared with scores on the Basso Mouse Scale (BMS). Results indicate that this software successfully differentiates sham animals from injured animals on a number of gait characteristics, including hindlimb swing time, stride length, toe spread, and track width. Differences were found between mild and moderate contusion injuries, indicating a high degree of sensitivity within the system. Rear track width, a measure of the animal's hindlimb base of support, correlated strongly both with spared white matter percentage and with terminal BMS. TreadScan allows for an objective and rapid behavioral assessment of locomotor function following mild-moderate contusive SCI, where the majority of mice still exhibit hindlimb weight support and plantar paw placement during stepping.

Item Type:

Journal Article (Original Article)


04 Faculty of Medicine > Pre-clinic Human Medicine > Theodor Kocher Institute

UniBE Contributor:

Enzmann, Gaby




M.A. Liebert




Factscience Import

Date Deposited:

04 Oct 2013 15:13

Last Modified:

05 Dec 2022 14:22

Publisher DOI:


PubMed ID:


Web of Science ID:


URI: (FactScience: 197090)

Actions (login required)

Edit item Edit item
Provide Feedback