Cwiek, Paulina; Leni, Zaira; Salm, Fabiana; Dimitrova, Valeriya; Styp-Rekowska, Beata; Chiriano, Gianpaolo; Carroll, Michael; Höland, Katrin; Djonov, Valentin; Scapozza, Leonardo; Guiry, Patrick; Arcaro, Alexandre (2015). RNA interference screening identifies a novel role for PCTK1/CDK16 in medulloblastoma with c-Myc amplification. OncoTarget, 6(1), pp. 116-129. Impact Journals LLC 10.18632/oncotarget.2699
|
Text
Paper 1 Paulina Ćwiek.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (5MB) | Preview |
Medulloblastoma (MB) is the most common malignant brain tumor in children and is associated with a poor outcome. cMYC amplification characterizes a subgroup of MB with very poor prognosis. However, there exist so far no targeted therapies for the subgroup of MB with cMYC amplification. Here we used kinome-wide RNA interference screening to identify novel kinases that may be targeted to inhibit the proliferation of c-Myc-overexpressing MB. The RNAi screen identified a set of 5 genes that could be targeted to selectively impair the proliferation of c-Myc-overexpressing MB cell lines: AKAP12 (A-kinase anchor protein), CSNK1α1 (casein kinase 1, alpha 1), EPHA7 (EPH receptor A7) and PCTK1 (PCTAIRE protein kinase 1). When using RNAi and a pharmacological inhibitor selective for PCTK1, we could show that this kinase plays a crucial role in the proliferation of MB cell lines and the activation of the mammalian target of rapamycin (mTOR) pathway. In addition, pharmacological PCTK1 inhibition reduced the expression levels of c-Myc. Finally, targeting PCTK1 selectively impaired the tumor growth of c-Myc-overexpressing MB cells in vivo. Together our data uncover a novel and crucial role for PCTK1 in the proliferation and survival of MB characterized by cMYC amplification.