TECPR2 Associated Neuroaxonal Dystrophy in Spanish Water Dogs.

Hahn, Kerstin Caroline; Rohdin, Cecilia; Jagannathan, Vidhya; Wohlsein, Peter; Baumgärtner, Wolfgang; Seehusen, Frauke; Spitzbarth, Ingo; Grandon, Rodrigo; Drögemüller, Cord; Jäderlund, Karin Hultin (2015). TECPR2 Associated Neuroaxonal Dystrophy in Spanish Water Dogs. PLoS ONE, 10(11), e0141824. Public Library of Science 10.1371/journal.pone.0141824

[img]
Preview
Text
http___www.plosone.org_article_fetchObject.action_uri=info_doi_10.1371_journal.pone.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (9MB) | Preview

Clinical, pathological and genetic examination revealed an as yet uncharacterized juvenile-onset neuroaxonal dystrophy (NAD) in Spanish water dogs. Affected dogs presented with various neurological deficits including gait abnormalities and behavioral deficits. Histopathology demonstrated spheroid formation accentuated in the grey matter of the cerebral hemispheres, the cerebellum, the brain stem and in the sensory pathways of the spinal cord. Iron accumulation was absent. Ultrastructurally spheroids contained predominantly closely packed vesicles with a double-layered membrane, which were characterized as autophagosomes using immunohistochemistry. The family history of the four affected dogs suggested an autosomal recessive inheritance. SNP genotyping showed a single genomic region of extended homozygosity of 4.5 Mb in the four cases on CFA 8. Linkage analysis revealed a maximal parametric LOD score of 2.5 at this region. By whole genome re-sequencing of one affected dog, a perfectly associated, single, non-synonymous coding variant in the canine tectonin beta-propeller repeat-containing protein 2 (TECPR2) gene affecting a highly conserved region was detected (c.4009C>T or p.R1337W). This canine NAD form displays etiologic parallels to an inherited TECPR2 associated type of human hereditary spastic paraparesis (HSP). In contrast to the canine NAD, the spinal cord lesions in most types of human HSP involve the sensory and the motor pathways. Furthermore, the canine NAD form reveals similarities to cases of human NAD defined by widespread spheroid formation without iron accumulation in the basal ganglia. Thus TECPR2 should also be considered as candidate gene for human NAD. Immunohistochemistry and the ultrastructural findings further support the assumption, that TECPR2 regulates autophagosome accumulation in the autophagic pathways. Consequently, this report provides the first genetic characterization of juvenile canine NAD, describes the histopathological features associated with the TECPR2 mutation and provides evidence to emphasize the association between failure of autophagy and neurodegeneration.

Item Type:

Journal Article (Original Article)

Division/Institute:

05 Veterinary Medicine > Research Foci > NeuroCenter
05 Veterinary Medicine > Department of Clinical Research and Veterinary Public Health (DCR-VPH) > Institute of Genetics
05 Veterinary Medicine > Department of Clinical Research and Veterinary Public Health (DCR-VPH)

UniBE Contributor:

Hahn, Kerstin Caroline; Jagannathan, Vidya and Drögemüller, Cord

Subjects:

500 Science > 570 Life sciences; biology
500 Science > 590 Animals (Zoology)
600 Technology > 610 Medicine & health

ISSN:

1932-6203

Publisher:

Public Library of Science

Language:

English

Submitter:

Cord Drögemüller

Date Deposited:

12 Nov 2015 11:56

Last Modified:

18 Oct 2016 07:52

Publisher DOI:

10.1371/journal.pone.0141824

PubMed ID:

26555167

BORIS DOI:

10.7892/boris.73040

URI:

https://boris.unibe.ch/id/eprint/73040

Actions (login required)

Edit item Edit item
Provide Feedback