Manzi, Marco; Vicini, Delio Aleardo; Zwicker, Matthias (2016). Regularizing Image Reconstruction for Gradient-Domain Rendering with Feature Patches. Computer graphics forum, 35(2), pp. 263-273. Blackwell 10.1111/cgf.12829
Text
FeaturePatchesForGPTReconstruction.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (9MB) |
We present a novel algorithm to reconstruct high-quality images from sampled pixels and gradients in gradient-domain rendering. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to exploit local patches in feature images, which contain per-pixels normals, textures, position, etc., to formulate these constraints. We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Institute of Computer Science (INF) > Computer Graphics Group (CGG) 08 Faculty of Science > Institute of Computer Science (INF) |
UniBE Contributor: |
Manzi, Marco, Vicini, Delio Aleardo, Zwicker, Matthias |
Subjects: |
000 Computer science, knowledge & systems 500 Science > 510 Mathematics |
ISSN: |
0167-7055 |
Publisher: |
Blackwell |
Funders: |
[4] Swiss National Science Foundation |
Projects: |
[UNSPECIFIED] Efficient Sampling and Reconstruction for Image Synthesis 143886 |
Language: |
English |
Submitter: |
Matthias Zwicker |
Date Deposited: |
08 Jun 2016 16:33 |
Last Modified: |
05 Dec 2022 14:55 |
Publisher DOI: |
10.1111/cgf.12829 |
BORIS DOI: |
10.7892/boris.81157 |
URI: |
https://boris.unibe.ch/id/eprint/81157 |