Legrand, Michel; McConnell, Joseph; Fischer, Hubertus; Wolff, Eric W.; Preunkert, Susanne; Arienzo, Monica; Chellman, Nathan; Leuenberger, Daiana; Maselli, Olivia; Place, Philip; Sigl, Michael; Schüpbach, Simon; Flannigan, Mike (2016). Boreal fire records in Northern Hemisphere ice cores: a review. Climate of the past, 12(10), pp. 2033-2059. Copernicus Publications 10.5194/cp-12-2033-2016
|
Text
legrand16clp.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (6MB) | Preview |
Here, we review different attempts made since the early 1990s to reconstruct past forest fire activity using chemical signals recorded in ice cores extracted from the Greenland ice sheet and a few mid-northern latitude, high-elevation glaciers. We first examined the quality of various inorganic (ammonium, nitrate, potassium) and organic (black carbon, various organic carbon compounds including levoglucosan and numerous carboxylic acids) species proposed as fire proxies in ice, particularly in Greenland. We discuss limitations in their use during recent vs. pre-industrial times, atmospheric lifetimes, and the relative importance of other non-biomass-burning sources. Different high-resolution records from several Greenland drill sites and covering various timescales, including the last century and Holocene, are discussed. We explore the extent to which atmospheric transport can modulate the record of boreal fires from Canada as recorded in Greenland ice. Ammonium, organic fractions (black and organic carbon), and specific organic compounds such as formate and vanillic acid are found to be good proxies for tracing past boreal fires in Greenland ice. We show that use of other species – potassium, nitrate, and carboxylates (except formate) – is complicated by either post-depositional effects or existence of large non-biomass-burning sources. The quality of levoglucosan with respect to other proxies is not addressed here because of a lack of high-resolution profiles for this species, preventing a fair comparison. Several Greenland ice records of ammonium consistently indicate changing fire activity in Canada in response to past climatic conditions that occurred during the last millennium and since the last large climatic transition. Based on this review, we make recommendations for further study to increase reliability of the reconstructed history of forest fires occurring in a given region.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Physics Institute > Climate and Environmental Physics 10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR) 08 Faculty of Science > Physics Institute |
UniBE Contributor: |
Fischer, Hubertus, Leuenberger, Daiana, Schüpbach, Simon |
Subjects: |
500 Science > 530 Physics |
ISSN: |
1814-9324 |
Publisher: |
Copernicus Publications |
Language: |
English |
Submitter: |
Doris Rätz |
Date Deposited: |
14 Nov 2016 16:44 |
Last Modified: |
05 Dec 2022 14:59 |
Publisher DOI: |
10.5194/cp-12-2033-2016 |
BORIS DOI: |
10.7892/boris.89860 |
URI: |
https://boris.unibe.ch/id/eprint/89860 |