Deconstructing the Last Glacial termination: the role of millennial and orbital-scale forcings

Menviel, L.; Timmermann, A.; Timm, O. Elison; Mouchet, A. (2011). Deconstructing the Last Glacial termination: the role of millennial and orbital-scale forcings. Quaternary Science Reviews, 30(9-10), pp. 1155-1172. Oxford: Pergamon 10.1016/j.quascirev.2011.02.005

[img] Text
menviel11qsr.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (3MB) | Request a copy

Using an Earth system model of intermediate complexity forced by continuously varying boundary conditions and a hypothetical profile of freshwater forcing, the model simulates Heinrich event 1 (H1), the Bølling warm period, the Older Dryas, the Antarctic Cold Reversal (ACR) and the Younger Dryas in close agreement with paleo-proxy data from different regions worldwide. The ACR can be simulated as the bipolar seesaw response to the AMOC recovery during the termination of H1. However, this study also demonstrates that the amplitude of the ACR can be further amplified by a rapid deglacial retreat of the Antarctic Ice sheets. We suggest that melting from both, the Laurentide and the Antarctic Ice sheets contributed to the sea level rise associated with Meltwater Pulse 1-A (MWP-1A). It is hypothesized that the northern hemispheric source of MWP-1A caused the Older Dryas cooling in the Northern Hemisphere, whereas the Southern Hemispheric source contributed to the ACR. The study also documents that for the majority of paleo-climate proxies considered here, the relative timing can be qualitatively reproduced by the transient modeling experiments. The climate model solution presented here may provide a means to further constrain dating uncertainties of some of paleo-climate proxies during the Last Glacial Termination.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Climate and Environmental Physics
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)
08 Faculty of Science > Physics Institute

UniBE Contributor:

Menviel, Laurie

Subjects:

500 Science > 530 Physics

ISSN:

0277-3791

Publisher:

Pergamon

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:28

Last Modified:

05 Dec 2022 14:08

Publisher DOI:

10.1016/j.quascirev.2011.02.005

Web of Science ID:

000291516100011

BORIS DOI:

10.48350/10198

URI:

https://boris.unibe.ch/id/eprint/10198 (FactScience: 216049)

Actions (login required)

Edit item Edit item
Provide Feedback