Balogh, Zoltan; Penso, Valentina (2018). On singular sets of c-concave functions. Manuscripta mathematica, 156(3-4), pp. 503-519. Springer 10.1007/s00229-017-0971-2
|
Text
10.1007_s00229-017-0971-2.pdf - Published Version Available under License Publisher holds Copyright. Download (514kB) | Preview |
We prove that under quite general condition on a cost function c in R n the Hausdorff dimension of the singular set of a c-concave function has dimension at most n - 1. Our result applies for non-semiconcave cost functions and has applications in optimal mass transportation.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics |
UniBE Contributor: |
Balogh, Zoltan, Penso, Valentina |
Subjects: |
500 Science > 510 Mathematics |
ISSN: |
0025-2611 |
Publisher: |
Springer |
Language: |
English |
Submitter: |
Olivier Bernard Mila |
Date Deposited: |
17 Apr 2018 08:46 |
Last Modified: |
05 Dec 2022 15:09 |
Publisher DOI: |
10.1007/s00229-017-0971-2 |
BORIS DOI: |
10.7892/boris.109141 |
URI: |
https://boris.unibe.ch/id/eprint/109141 |