Combined garnet and zircon geochronology of the ultra-high temperature metamorphism: Constraints on the rise of the Orlica-Śnieżnik Dome, NE Bohemian Massif, SW Poland

Walczak, Katarzyna; Anczkiewicz, Robert; Szczepański, Jacek; Rubatto, Daniela; Jan, Košler (2017). Combined garnet and zircon geochronology of the ultra-high temperature metamorphism: Constraints on the rise of the Orlica-Śnieżnik Dome, NE Bohemian Massif, SW Poland. Lithos, 292-293, pp. 388-400. Elsevier 10.1016/j.lithos.2017.09.013

[img] Text
Walczak_etal_Lithos_2017.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB)

Garnet and zircon geochronology combined with trace element partitioning and petrological studies provide tight constraints on evolution of the UHT-(U)HP terrain of the Orlica-Śnieżnik Dome (OSD) in the NE Bohemian massif. Lu-Hf dating of peritectic garnet from two mesocratic granulites constrained the time of its initial growth at 346.9 ± 1.2 and 348.3 ± 2.0 Ma recording peak 2.5 GPa pressure and 950 °C temperature. In situ, U-Pb SHRIMP dating of zircon from the same granulite gave a younger age of 341.9 ± 3.4 Ma. Ti-in-zircon thermometry indicates crystallization at 810–860 °C pointing to zircon formation on the retrograde path. Lu partitioning between garnet rim and zircon suggest equilibrium growth and thus U-Pb zircon age constrain the terminal phase of garnet crystallization which lasted about 6 Ma.

All Sm-Nd garnet ages obtained for mesocratic and mafic granulites are identical and consistently younger than the corresponding Lu-Hf dates. They are interpreted as reflecting cooling of granulites through the Sm-Nd closure temperature at about 337 Ma.

The estimated PTt path documents the ca. 10 Ma evolution cycle of the OSD characterized by two distinct periods: (1) 347 - > 342 Ma period corresponds to nearly isothermal decompression resulting from crustal scale folding and vertical extrusion of granulites, and (2) at > 342–337 Ma which corresponds to a fast, nearly isobaric cooling.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Institute of Geological Sciences

UniBE Contributor:

Rubatto, Daniela

Subjects:

500 Science > 550 Earth sciences & geology

ISSN:

0024-4937

Publisher:

Elsevier

Language:

English

Submitter:

Daniela Rubatto

Date Deposited:

19 Apr 2018 15:44

Last Modified:

05 Dec 2022 15:11

Publisher DOI:

10.1016/j.lithos.2017.09.013

BORIS DOI:

10.7892/boris.112635

URI:

https://boris.unibe.ch/id/eprint/112635

Actions (login required)

Edit item Edit item
Provide Feedback