Azzimonti, Dario; Ginsbourger, David; Rohmer, Jérémy; Idier, Déborah (2019). Profile extrema for visualizing and quantifying uncertainties on excursion regions. Application to coastal flooding. Technometrics, 61(4), pp. 474-493. Taylor & Francis 10.1080/00401706.2018.1562987
Text
Profile Extrema for Visualizing and Quantifying Uncertainties on Excursion Regions Application to Coastal Flooding.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (17MB) |
We consider the problem of describing excursion sets of a real-valued function f, that is, the set of inputs where f is above a fixed threshold. Such regions are hard to visualize if the input space dimension, d, is higher than 2. For a given projection matrix from the input space to a lower dimensional (usually 1, 2) subspace, we introduce profile sup (inf) functions that associate to each point in the projection’s image the sup (inf) of the function constrained over the pre-image of this point by the considered projection. Plots of profile extrema functions convey a simple, although intrinsically partial, visualization of the set. We consider expensive to evaluate functions where only a very limited number of evaluations, n, is available, for example, n<100d, and we surrogate f with a posterior quantity of a Gaussian process (GP) model. We first compute profile extrema functions for the posterior mean given n evaluations of f. We quantify the uncertainty on such estimates by studying the distribution of GP profile extrema with posterior quasi-realizations obtained from an approximating process. We control such approximation with a bound inherited from the Borell-TIS inequality. The technique is applied to analytical functions (d = 2, 3) and to a five-dimensional coastal flooding test case for a site located on the Atlantic French coast. Here f is a numerical model returning the area of flooded surface in the coastal region given some offshore conditions. Profile extrema functions allowed us to better understand which offshore conditions impact large flooding events.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematical Statistics and Actuarial Science |
UniBE Contributor: |
Azzimonti, Dario Filippo, Ginsbourger, David |
Subjects: |
500 Science > 510 Mathematics 500 Science > 550 Earth sciences & geology |
ISSN: |
0040-1706 |
Publisher: |
Taylor & Francis |
Language: |
English |
Submitter: |
David Ginsbourger |
Date Deposited: |
14 Jan 2020 09:14 |
Last Modified: |
05 Dec 2022 15:25 |
Publisher DOI: |
10.1080/00401706.2018.1562987 |
BORIS DOI: |
10.7892/boris.125293 |
URI: |
https://boris.unibe.ch/id/eprint/125293 |