Metallicity effect and planet mass function in pebble-based planet formation models

Brügger, Natacha; Alibert, Yann; Ataiee, S.; Benz, W. (2018). Metallicity effect and planet mass function in pebble-based planet formation models. Astronomy and astrophysics, 619, A174. EDP Sciences 10.1051/0004-6361/201833347

[img]
Preview
Text
1808.10707.pdf - Accepted Version
Available under License Publisher holds Copyright.

Download (3MB) | Preview
[img] Text
aa33347-18.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (15MB) | Request a copy

One of the main scenarios of planet formation is the core accretion model where a massive core forms first and then accretes a gaseous envelope. This core forms by accreting solids, either planetesimals, or pebbles. A key constraint in this model is that the accretion of gas must proceed before the dissipation of the gas disc. Classical planetesimal accretion scenario predicts that the time needed to form a giant planets core is much longer than the time needed to dissipate the disc. This difficulty led to the development of another accretion scenario, in which cores grow by accretion of pebbles, which are much smaller and thus more easily accreted, leading to a more rapid formation. The aim of this paper is to compare our updated pebble-based planet formation model with observations, in particular the well studied metallicity effect. We adopt the Bitsch et al. 2015a disc model and the Bitsch et al. 2015b pebble model and use a population synthesis approach to compare the formed planets with observations. We find that keeping the same parameters as in Bitsch et al. 2015b leads to no planet growth due to a computation mistake in the pebble flux (Bitsch et al. 2017). Indeed a large fraction of the heavy elements should be put into pebbles (Zpeb/Ztot = 0.9) in order to form massive planets using this approach. The resulting mass functions show a huge amount of giants and a lack of Neptune mass planets, which are abundant according to observations. To overcome this issue we include the computation of the internal structure for the planetary atmosphere to our model. This leads to the formation of Neptune mass planets but no observable giants. Reducing the opacity of the planetary envelope finally matches observations better. We conclude that modeling the internal structure for the planetary atmosphere is necessary to reproduce observations.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences > Theoretical Astrophysics and Planetary Science (TAPS)
08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences
08 Faculty of Science > Physics Institute
08 Faculty of Science > Physics Institute > NCCR PlanetS

UniBE Contributor:

Jungo, Natacha, Alibert, Yann Daniel Pierre

Subjects:

500 Science
500 Science > 520 Astronomy
500 Science > 530 Physics
600 Technology > 620 Engineering

ISSN:

0004-6361

Publisher:

EDP Sciences

Language:

English

Submitter:

Janine Jungo

Date Deposited:

13 Jun 2019 12:09

Last Modified:

02 Mar 2023 23:31

Publisher DOI:

10.1051/0004-6361/201833347

BORIS DOI:

10.7892/boris.128721

URI:

https://boris.unibe.ch/id/eprint/128721

Actions (login required)

Edit item Edit item
Provide Feedback