Aerts, Joost W.; Riedo, Andreas; Melton, Daniel J.; Martini, Simone; Meierhenrich, Uwe J.; Flahaut, Jessica; Lindner, Robert; Ehrenfreund, Pascale (2019). Biosignature Analysis of Mars Soil Analogues from the Atacama desert: Challenges and Implications for future Missions to Mars (Submitted). Astrobiology Mary Ann Liebert
|
Text
Aerts_et_al_Main_Manuscript_Astrobiology.pdf - Submitted Version Available under License Publisher holds Copyright. Download (258kB) | Preview |
The detection of biosignatures on Mars is of outstanding interest in current Astrobiology and drives various fields of research, ranging from new sample collection strategies to the development of more sensitive detection techniques. Detailed analysis of the organic content in Mars analogue materials collected from extreme environments on Earth improves the current understanding of biosignature preservation and detection under conditions similar to Mars. In this paper we examined the biological fingerprint of several locations in the Atacama desert (Chile) which include different wet and dry, and intermediate to high elevation salt flats (also named salars). Liquid Chromatography and Multidimensional Gas Chromatography Mass Spectrometry measurement techniques were used for the detection and analysis of amino acids extracted from the salt crusts and sediments using sophisticated extraction procedures. Illumina 16S amplicon sequencing was used for the identification of microbial communities associated with the different sample locations. Although amino acid load and organic carbon and nitrogen quantities were generally low, it was found that most of the samples harbored complex and versatile microbial communities, which were dominated by (extremely) halophilic microorganisms (most notably by species of the Archaeal family Halobacteriaceae). The dominance of salts (i.e. halites and sulphates) in the investigated samples leaves its mark on the composition of the microbial communities but does not appear to hinder the potential of life to flourish since it can clearly adapt to the higher concentrations. Although the Atacama desert is one of the driest and harshest environments on Earth, it is shown that there are still sub-locations where life is able to maintain a foothold, and as such, salt flats could be considered as interesting targets for future life exploration missions on Mars.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences |
UniBE Contributor: |
Riedo, Andreas |
Subjects: |
500 Science > 520 Astronomy 600 Technology > 620 Engineering 500 Science > 530 Physics |
ISSN: |
1531-1074 |
Publisher: |
Mary Ann Liebert |
Language: |
English |
Submitter: |
Andreas Riedo |
Date Deposited: |
13 Jan 2020 07:33 |
Last Modified: |
05 Dec 2022 15:33 |
BORIS DOI: |
10.7892/boris.135852 |
URI: |
https://boris.unibe.ch/id/eprint/135852 |