Newbery, D. M.; Lingenfelder, M. (29 July 2020). Stem girth changes in response to soil water potential in lowland dipterocarp forest in Borneo: a time-series analysis (bioRxiv). Cold Spring Harbor Laboratory 10.1101/2020.07.28.222547
Text
2020_BioRxiv_222547.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (690kB) |
Time series data offer a way of investigating the causes driving ecological processes. To test for possible differences in water relations between species of different forest structural guilds, daily stem girth increments (gthi), of 18 trees across six species were regressed individually on soil moisture potential (SMP) and temperature (TEMP), accounting for temporal autocorrelation (in GLS-arima models), and compared between a wet and a dry period. Coefficients were estimates of response in gthi to increasing SMP or TEMP. The best-fitting significant variables were SMP the day before and TEMP the same day. The first resulted in a mix of positive and negative coefficients, the second largely positive ones. Negative relationships for large canopy trees can be interpreted in a reversed causal sense: fast transporting stems depleted soil water and lowered SMP. Positive relationships for understorey trees meant they took up most water at high SMP. The unexpected negative relationships for these understorey trees may have been due to their roots accessing deeper water supplies (SMP being inversely related to that of the surface layer), this influenced by competition with larger neighbour trees. A tree-soil flux dynamics manifold may have been operating. Patterns of mean diurnal girth variation were more consistent among species than, but weakly related to, time-series coefficients, suggesting no simple trait-based differentiation of responses. Expected differences in response to SMP in the wet and dry periods did not support a previous hypothesis for drought and non-drought tolerant understorey guilds. Trees within species showed highly individual responses. Time-series gthi-SMP regressions might be applied as indicators of relative depth of access to water for small trees. Obtaining detailed information on individual tree's root systems and recording SMP at many depths and locations are needed to get closer to the mechanisms that underlie complex tree-soil water relations in tropical forests.
Item Type: |
Working Paper |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) > Vegetation Ecology [discontinued] 08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) |
UniBE Contributor: |
Newbery, David McClintock, Lingenfelder, Marcus |
Subjects: |
500 Science > 580 Plants (Botany) |
Series: |
bioRxiv |
Publisher: |
Cold Spring Harbor Laboratory |
Language: |
English |
Submitter: |
Peter Alfred von Ballmoos-Haas |
Date Deposited: |
07 Aug 2020 10:01 |
Last Modified: |
05 Dec 2022 15:39 |
Publisher DOI: |
10.1101/2020.07.28.222547 |
BORIS DOI: |
10.7892/boris.145620 |
URI: |
https://boris.unibe.ch/id/eprint/145620 |