MIRACLES: atmospheric characterization of directly imaged planets and substellar companions at 4–5 μ m

Stolker, T.; Marleau, G.-D.; Cugno, G.; Mollière, P.; Quanz, S. P.; Todorov, K. O.; Kühn, J. (2020). MIRACLES: atmospheric characterization of directly imaged planets and substellar companions at 4–5 μ m. Astronomy and astrophysics, 644, A13. EDP Sciences 10.1051/0004-6361/202038878

[img] Text
aa38878-20.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (3MB) | Request a copy

The circumstellar disk of PDS 70 hosts two forming planets, which are actively accreting gas from their environment. The physical and chemical characteristics of these planets remain ambiguous due to their unusual spectral appearance compared to more evolved objects. In this work, we report the first detection of PDS 70 b in the Brα and M′ filters with VLT/NACO, a tentative detection of PDS 70 c in Brα, and a reanalysis of archival NACO L′ and SPHERE H23 and K12 imaging data. The near side of the disk is also resolved with the Brα and M′ filters, indicating that scattered light is non-negligible at these wavelengths. The spectral energy distribution (SED) of PDS 70 b is well described by blackbody emission, for which we constrain the photospheric temperature and photospheric radius to Teff = 1193 ± 20 K and R = 3.0 ± 0.2 RJ. The relatively low bolometric luminosity, log(L∕L⊙) = −3.79 ± 0.02, in combination with the large radius, is not compatible with standard structure models of fully convective objects. With predictions from such models, and adopting a recent estimate of the accretion rate, we derive a planetary mass and radius in the range of Mp ≈ 0.5–1.5 MJ and Rp ≈ 1–2.5 RJ, independently of the age and post-formation entropy of the planet. The blackbody emission, large photospheric radius, and the discrepancy between the photospheric and planetary radius suggests that infrared observations probe an extended, dusty environment around the planet, which obscures the view on its molecular composition. Therefore, the SED is expected to trace the reprocessed radiation from the interior of the planet and/or partially from the accretion shock. The photospheric radius lies deep within the Hill sphere of the planet, which implies that PDS 70 b not only accretes gas but is also continuously replenished by dust. Finally, we derive a rough upper limit on the temperature and radius of potential excess emission from a circumplanetary disk, Teff ≲ 256 K and R ≲ 245 RJ, but we do find weak evidence that the current data favors a model with a single blackbody component.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences > Theoretical Astrophysics and Planetary Science (TAPS)
08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences
08 Faculty of Science > Physics Institute
08 Faculty of Science > Physics Institute > NCCR PlanetS

UniBE Contributor:

Marleau, Gabriel-Dominique, Kühn, Jonas Guillaume

Subjects:

500 Science
500 Science > 520 Astronomy
600 Technology > 620 Engineering

ISSN:

0004-6361

Publisher:

EDP Sciences

Language:

English

Submitter:

Janine Jungo

Date Deposited:

10 Mar 2021 11:27

Last Modified:

05 Dec 2022 15:48

Publisher DOI:

10.1051/0004-6361/202038878

BORIS DOI:

10.48350/152758

URI:

https://boris.unibe.ch/id/eprint/152758

Actions (login required)

Edit item Edit item
Provide Feedback