Increased glucocorticoid metabolism in diabetic kidney disease.

Ackermann, Daniel; Vogt, Bruno; Bochud, Murielle; Burnier, Michel; Martin, Pierre-Yves; Paccaud, Fred; Ehret, Georg; Guessous, Idris; Ponte, Belen; Pruijm, Menno; Pechère-Bertschi, Antoinette; Jamin, Heidi; Klossner, Rahel; Dick, Bernhard; Mohaupt, Markus G; Gennari-Moser, Carine (2022). Increased glucocorticoid metabolism in diabetic kidney disease. PLoS ONE, 17(6), e0269920. Public Library of Science 10.1371/journal.pone.0269920

[img]
Preview
Text
journal.pone.0269920.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (1MB) | Preview

AIMS

Glomerular damage indicated by proteinuria is a main symptom in diabetic nephropathy. Mineralocorticoid receptor (MR) antagonists (MRAs) are beneficial irrespective of aldosterone availability. Thus, we hypothesized an alternatively activated MR to promote glomerular damage in proteinuric diabetic nephropathy. Specifically, we aimed first to demonstrate the presence of steroid hormones serving as alternative MR targets in type II diabetic patients with proteinuric kidney disease, second whether MR selectivity was modified, third to characterize MR and glucocorticoid receptor (GR) expression and activity in glomerular cell types exposed to eu- and hyperglycemic conditions, fourth to characterize the pro-fibrotic potential of primary human renal mesangial cells (HRMC) upon stimulation with aldosterone and cortisol, and fifth to specify the involvement of the MR and/or GR in pro-fibrotic signaling.

MATERIALS AND METHODS

Urinary steroid hormone profiles of patients with diabetic kidney disease were analyzed by gas chromatography-mass spectrometry and compared to an age and gender matched healthy control group taken out of a population study. In both cohorts, the activity of the MR pre-receptor enzyme 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2), which inactivates cortisol to prevent it from binding to the MR, was assessed to define a change in MR selectivity. Expression of HSD11B2, MR and GR was quantified in HRMC and primary human renal glomerular endothelial cells (HRGEC). Activity of MR and GR was explored in HRMC by measuring the MR/GR down-stream signal SGK1 and the pro-fibrotic genes TGFB1, FN1 and COL1A1 in normal and high glucose conditions with the MR/GR agonists aldosterone/cortisol and the MR/GR antagonists spironolactone/RU486.

RESULTS

Patients with diabetic kidney disease excreted more tetrahydroaldosterone than the control group reaching significance in men. The excretion of MR-agonistic steroid hormones was only increased for 18-hydroxytetrahydrocorticosterone in diabetic women. The excretion of most glucocorticoids was higher in the diabetic cohort. Higher apparent systemic HSD11B2 activity suggested less activation of the MR by cortisol in diabetic patients. Both cell types, HRMC and HRGEC, lacked expression of HSD11B2. Hyperglycemic conditions did not change MR and GR expression and activity. Stimulation with both aldosterone and cortisol promoted upregulation of pro-fibrotic genes in HRMC. This effect of MR and/or GR activation was more pronounced in high glucose conditions and partially inhibited by MRAs and GR antagonists.

CONCLUSIONS

In patients with diabetic kidney disease alternative MR activation is conceivable as cortisol and cortisone metabolites are increased. Systemic availability of active metabolites is counteracted via an increased HSD11B2 activity. As this cortisol deactivation is absent in HRMC and HRGEC, cortisol binding to the MR is enabled. Both, cortisol and aldosterone stimulation led to an increased expression of pro-fibrotic genes in HRMC. This mechanism was related to the MR as well as the GR and more marked in high glucose conditions linking the benefit of MRAs in diabetic kidney disease to these findings.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Dermatology, Urology, Rheumatology, Nephrology, Osteoporosis (DURN) > Clinic of Nephrology and Hypertension
04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > Unit Childrens Hospital > Forschungsgruppe Nephrologie / Hypertonie

UniBE Contributor:

Ackermann, Daniel, Vogt, Bruno, Jamin, Heidi, Dick, Bernhard, Mohaupt, Markus, Gennari, Carine

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1932-6203

Publisher:

Public Library of Science

Language:

English

Submitter:

Pubmed Import

Date Deposited:

27 Jun 2022 09:56

Last Modified:

05 Dec 2022 16:21

Publisher DOI:

10.1371/journal.pone.0269920

PubMed ID:

35749380

BORIS DOI:

10.48350/170890

URI:

https://boris.unibe.ch/id/eprint/170890

Actions (login required)

Edit item Edit item
Provide Feedback