Heitmann, Julien; Glangetas, Alban; Doenz, Jonathan; Dervaux, Juliane; Shama, Deeksha M; Garcia, Daniel Hinjos; Benissa, Mohamed Rida; Cantais, Aymeric; Perez, Alexandre; Müller, Daniel; Chavdarova, Tatjana; Ruchonnet-Metrailler, Isabelle; Siebert, Johan N; Lacroix, Laurence; Jaggi, Martin; Gervaix, Alain; Hartley, Mary-Anne (2023). DeepBreath-automated detection of respiratory pathology from lung auscultation in 572 pediatric outpatients across 5 countries. NPJ digital medicine, 6(1), p. 104. Springer Nature 10.1038/s41746-023-00838-3
|
Text
s41746-023-00838-3.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (2MB) | Preview |
The interpretation of lung auscultation is highly subjective and relies on non-specific nomenclature. Computer-aided analysis has the potential to better standardize and automate evaluation. We used 35.9 hours of auscultation audio from 572 pediatric outpatients to develop DeepBreath : a deep learning model identifying the audible signatures of acute respiratory illness in children. It comprises a convolutional neural network followed by a logistic regression classifier, aggregating estimates on recordings from eight thoracic sites into a single prediction at the patient-level. Patients were either healthy controls (29%) or had one of three acute respiratory illnesses (71%) including pneumonia, wheezing disorders (bronchitis/asthma), and bronchiolitis). To ensure objective estimates on model generalisability, DeepBreath is trained on patients from two countries (Switzerland, Brazil), and results are reported on an internal 5-fold cross-validation as well as externally validated (extval) on three other countries (Senegal, Cameroon, Morocco). DeepBreath differentiated healthy and pathological breathing with an Area Under the Receiver-Operator Characteristic (AUROC) of 0.93 (standard deviation [SD] ± 0.01 on internal validation). Similarly promising results were obtained for pneumonia (AUROC 0.75 ± 0.10), wheezing disorders (AUROC 0.91 ± 0.03), and bronchiolitis (AUROC 0.94 ± 0.02). Extval AUROCs were 0.89, 0.74, 0.74 and 0.87 respectively. All either matched or were significant improvements on a clinical baseline model using age and respiratory rate. Temporal attention showed clear alignment between model prediction and independently annotated respiratory cycles, providing evidence that DeepBreath extracts physiologically meaningful representations. DeepBreath provides a framework for interpretable deep learning to identify the objective audio signatures of respiratory pathology.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
04 Faculty of Medicine > Department of Gynaecology, Paediatrics and Endocrinology (DFKE) > Clinic of Paediatric Medicine > Notfallzentrum für Kinder und Jugendliche 04 Faculty of Medicine > Department of Gynaecology, Paediatrics and Endocrinology (DFKE) > Clinic of Paediatric Medicine |
UniBE Contributor: |
Hartley, Mary-Anne |
Subjects: |
600 Technology > 610 Medicine & health |
ISSN: |
2398-6352 |
Publisher: |
Springer Nature |
Language: |
English |
Submitter: |
Pubmed Import |
Date Deposited: |
05 Jun 2023 14:22 |
Last Modified: |
11 Jun 2023 02:21 |
Publisher DOI: |
10.1038/s41746-023-00838-3 |
PubMed ID: |
37268730 |
BORIS DOI: |
10.48350/183165 |
URI: |
https://boris.unibe.ch/id/eprint/183165 |