On the Jones polynomial modulo primes

Aiello, Valeriano; Baader, Sebastian; Ferretti, Livio (2023). On the Jones polynomial modulo primes. Glasgow mathematical journal, 65(3), pp. 730-734. Cambridge University Press 10.1017/S0017089523000253

[img] Text
on-the-jones-polynomial-modulo-primes.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (164kB)

We derive an upper bound on the density of Jones polynomials of knots modulo a prime number p, within a sufficiently large degree range: 4/p^7. As an application, we classify knot Jones polynomials modulo two of span up to eight.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics

UniBE Contributor:

Aiello, Valeriano, Baader, Sebastian, Ferretti, Livio Clemente Emilio

Subjects:

500 Science > 510 Mathematics

ISSN:

0017-0895

Publisher:

Cambridge University Press

Language:

English

Submitter:

Zarif Ibragimov

Date Deposited:

20 Dec 2023 14:56

Last Modified:

20 Dec 2023 14:56

Publisher DOI:

10.1017/S0017089523000253

BORIS DOI:

10.48350/190343

URI:

https://boris.unibe.ch/id/eprint/190343

Actions (login required)

Edit item Edit item
Provide Feedback