Human versus Rat PRF on Collagen Membranes: A Pilot Study of Mineralization in Rat Calvaria Defect Model.

Apaza Alccayhuaman, Karol Ali; Heimel, Patrick; Tangl, Stefan; Lettner, Stefan; Kampleitner, Carina; Panahipour, Layla; Kuchler, Ulrike; Gruber, Reinhard (2024). Human versus Rat PRF on Collagen Membranes: A Pilot Study of Mineralization in Rat Calvaria Defect Model. bioengineering, 11(5) MPDI 10.3390/bioengineering11050414

[img]
Preview
Text
bioengineering-11-00414.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (7MB) | Preview

Platelet-rich fibrin, the coagulated plasma fraction of blood, is commonly used to support natural healing in clinical applications. The rat calvaria defect is a standardized model to study bone regeneration. It remains, however, unclear if the rat calvaria defect is appropriate to investigate the impact of human PRF (Platelet-Rich Fibrin) on bone regeneration. To this end, we soaked Bio-Gide® collagen membranes in human or rat liquid concentrated PRF before placing them onto 5 mm calvarial defects in Sprague Dawley rats. Three weeks later, histology and micro-computed tomography (μCT) were performed. We observed that the collagen membranes soaked with rat PRF show the characteristic features of new bone and areas of mineralized collagen matrix, indicated by a median mineralized volume of 1.5 mm3 (range: 0.9; 5.3 mm3). Histology revealed new bone growing underneath the membrane and hybrid bone where collagen fibers are embedded in the new bone. Moreover, areas of passive mineralization were observed. The collagen membranes soaked with human PRF, however, were devoid of histological features of new bone formation in the center of the defect; only occasionally, new bone formed at the defect margins. Human PRF (h-PRF) caused a median bone volume of 0.9 mm3 (range: 0.3-3.3 mm3), which was significantly lower than what was observed with rat PRF (r-PRF), with a BV median of 1.2 mm3 (range: 0.3-5.9 mm3). Our findings indicate that the rat calvaria defect model is suitable for assessing the effects of rat PRF on bone formation, but caution is warranted when extrapolating conclusions regarding the efficacy of human PRF.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > School of Dental Medicine > Department of Periodontology

UniBE Contributor:

Gruber, Reinhard

Subjects:

600 Technology > 610 Medicine & health

ISSN:

2306-5354

Publisher:

MPDI

Language:

English

Submitter:

Pubmed Import

Date Deposited:

27 May 2024 08:49

Last Modified:

28 May 2024 15:14

Publisher DOI:

10.3390/bioengineering11050414

PubMed ID:

38790282

Uncontrolled Keywords:

PRF bone regeneration calvaria defect collagen membranes heterologous homologous rat

BORIS DOI:

10.48350/197096

URI:

https://boris.unibe.ch/id/eprint/197096

Actions (login required)

Edit item Edit item
Provide Feedback