Exploring the thermally-controlled fentanyl transdermal therapy to provide constant drug delivery by physics-based digital twins.

Bahrami, Flora; Psikuta, Agnes; Rossi, René Michel; Dommann, Alex; Defraeye, Thijs (2024). Exploring the thermally-controlled fentanyl transdermal therapy to provide constant drug delivery by physics-based digital twins. (In Press). European journal of pharmaceutical sciences, 106848, p. 106848. Elsevier 10.1016/j.ejps.2024.106848

[img]
Preview
Text
1-s2.0-S092809872400160X-main.pdf - Accepted Version
Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works (CC-BY-NC-ND).

Download (2MB) | Preview

Transdermal drug delivery is suitable for low-molecular-weight drugs with specific lipophilicity, like fentanyl, which is widely used for cancer-induced pain management. However, fentanyl's transdermal therapy displays high intra-individual variability. Factors like skin characteristics at application sites and ambient temperature contribute to this variation. In this study, we developed a physics-based digital twin of the human body to cope with this variability and propose better adapted setups. This twin includes an in-silico skin model for drug penetration, a pharmacokinetic model, and a pharmacodynamic model. Based on the results of our simulations, applying the patch on the flank (side abdominal area) showed a 15.3% higher maximum fentanyl concentration in the plasma than on the chest. Additionally, the time to reach this maximum concentration when delivered through the flank was 19.8 h, which was 10.3 h earlier than via the upper arm. Finally, this variation led to an 18% lower minimum pain intensity for delivery via the flank than the chest. Moreover, the impact of seasonal changes on ambient temperature and skin temperature by considering the activity level was investigated. Based on our result, the fentanyl uptake flux by capillaries increased by up to 11.8% from an inactive state in winter to an active state in summer. We also evaluated the effect of controlling fentanyl delivery by adjusting the temperature of the patch to alleviate the pain to reach a mild pain intensity (rated three on the VAS scale). By implementing this strategy, the average pain intensity decreased by 1.1 points, and the standard deviation for fentanyl concentration in plasma and average pain intensity reduced by 37.5% and 33.3%, respectively. Therefore, our digital twin demonstrated the efficacy of controlled drug release through temperature regulation, ensuring the therapy toward the intended target outcome and reducing therapy outcome variability. This holds promise as a potentially useful tool for physicians.

Item Type:

Journal Article (Original Article)

Division/Institute:

10 Strategic Research Centers > ARTORG Center for Biomedical Engineering Research > ARTORG Center - Musculoskeletal Biomechanics

UniBE Contributor:

Dommann, Alex

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1879-0720

Publisher:

Elsevier

Language:

English

Submitter:

Pubmed Import

Date Deposited:

11 Jul 2024 09:49

Last Modified:

12 Jul 2024 00:16

Publisher DOI:

10.1016/j.ejps.2024.106848

PubMed ID:

38986719

Uncontrolled Keywords:

Controlled release Environmental impact intra-individual variability pharmacokinetics model thermally induced release transdermal drug delivery

BORIS DOI:

10.48350/198906

URI:

https://boris.unibe.ch/id/eprint/198906

Actions (login required)

Edit item Edit item
Provide Feedback