Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface

Ferguson, Stephen John; Broggini, Nina; Wieland, Marco; de Wild, Michael; Rupp, Frank; Geis-Gerstorfer, Jürgen; Cochran, David L; Buser, Daniel (2006). Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. Journal of biomedical materials research. Part A, 78(2), pp. 291-297. Hoboken, N.J.: John Wiley & Sons 10.1002/jbm.a.30678

[img] Text
20020.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (187kB)

The functional capacity of osseointegrated dental implants to bear load is largely dependent on the quality of the interface between the bone and implant. Sandblasted and acid-etched (SLA) surfaces have been previously shown to enhance bone apposition. In this study, the SLA has been compared with a chemically modified SLA (modSLA) surface. The increased wettability of the modSLA surface in a protein solution was verified by dynamic contact angle analysis. Using a well-established animal model with a split-mouth experimental design, implant removal torque testing was performed to determine the biomechanical properties of the bone-implant interface. All implants had an identical cylindrical shape with a standard thread configuration. Removal torque testing was performed after 2, 4, and 8 weeks of bone healing (n = 9 animals per healing period, three implants per surface type per animal) to evaluate the interfacial shear strength of each surface type. Results showed that the modSLA surface was more effective in enhancing the interfacial shear strength of implants in comparison with the conventional SLA surface during early stages of bone healing. Removal torque values of the modSLA-surfaced implants were 8-21% higher than those of the SLA implants (p = 0.003). The mean removal torque values for the modSLA implants were 1.485 N m at 2 weeks, 1.709 N m at 4 weeks, and 1.345 N m at 8 weeks; and correspondingly, 1.231 N m, 1.585 N m, and 1.143 N m for the SLA implants. The bone-implant interfacial stiffness calculated from the torque-rotation curve was on average 9-14% higher for the modSLA implants when compared with the SLA implants (p = 0.038). It can be concluded that the modSLA surface achieves a better bone anchorage during early stages of bone healing than the SLA surface; chemical modification of the standard SLA surface likely enhances bone apposition and this has a beneficial effect on the interfacial shear strength.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > School of Dental Medicine > Department of Oral Surgery and Stomatology
04 Faculty of Medicine > Pre-clinic Human Medicine > Institute for Surgical Technology & Biomechanics ISTB [discontinued]

UniBE Contributor:

Ferguson, Stephen John, Broggini, Nina, Buser, Daniel Albin

Subjects:

600 Technology > 610 Medicine & health
500 Science > 570 Life sciences; biology

ISSN:

1549-3296

Publisher:

John Wiley & Sons

Submitter:

Eveline Carmen Schuler

Date Deposited:

04 Oct 2013 14:48

Last Modified:

02 Mar 2023 23:22

Publisher DOI:

10.1002/jbm.a.30678

PubMed ID:

16637025

Web of Science ID:

000238928100009

BORIS DOI:

10.7892/boris.20020

URI:

https://boris.unibe.ch/id/eprint/20020 (FactScience: 3101)

Actions (login required)

Edit item Edit item
Provide Feedback