Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins 2 and 7 and transforming growth factor beta1 induce the formation of different types of cartilaginous tissue

Shintani, Nahoko; Hunziker, Ernst B (2007). Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins 2 and 7 and transforming growth factor beta1 induce the formation of different types of cartilaginous tissue. Arthritis & rheumatism, 56(6), pp. 1869-79. Hoboken, N.J.: Wiley-Blackwell 10.1002/art.22701

Full text not available from this repository.

OBJECTIVE: To compare the potential of bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7) and transforming growth factor beta1 (TGFbeta1) to effect the chondrogenic differentiation of synovial explants by analyzing the histologic, biochemical, and gene expression characteristics of the cartilaginous tissues formed. METHODS: Synovial explants derived from the metacarpal joints of calves were cultured in agarose. Initially, BMP-2 was used to evaluate the chondrogenic potential of the synovial explants under different culturing conditions. Under appropriate conditions, the chondrogenic effects of BMP-2, BMP-7, and TGFbeta1 were then compared. The differentiated tissue was characterized histologically, histomorphometrically, immunohistochemically, biochemically, and at the gene expression level. RESULTS: BMP-2 induced the chondrogenic differentiation of synovial explants in a dose- and time-dependent manner under serum- and dexamethasone-free conditions. The expression levels of cartilage-related genes increased in a time-dependent manner. BMP-7 was more potent than BMP-2 in inducing chondrogenesis, but the properties of the differentiated tissue were similar in each case. The type of cartilaginous tissue formed under the influence of TGFbeta1 differed in terms of both cell phenotype and gene expression profiles. CONCLUSION: The 3 tested members of the TGFbeta superfamily have different chondrogenic potentials and induce the formation of different types of cartilaginous tissue. To effect the full differentiation of synovial explants into a typically hyaline type of articular cartilage, further refinement of the stimulation conditions is required. This might be achieved by the simultaneous application of several growth factors.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > DBMR Forschung Mu35 > Forschungsgruppe Orthopädische Chirurgie
04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > DBMR Forschung Mu35 > Forschungsgruppe Orthopädische Chirurgie

UniBE Contributor:

Shintani, Nahoko, Hunziker, Ernst Bruno

ISSN:

0004-3591

ISBN:

17530715

Publisher:

Wiley-Blackwell

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 15:01

Last Modified:

05 Dec 2022 14:19

Publisher DOI:

10.1002/art.22701

PubMed ID:

17530715

Web of Science ID:

000247164300016

URI:

https://boris.unibe.ch/id/eprint/26624 (FactScience: 75544)

Actions (login required)

Edit item Edit item
Provide Feedback