Lima do Rosario, Denis (2014). Cross-Layer Optimizations for Multimedia Distribution over Wireless Multimedia Sensor Networks and Flying Ad-Hoc Networks with Quality of Experience Support. (Dissertation, Federal University of Para / University of Bern, Faculty of Sciences)
Text
thesis.pdf - Accepted Version Restricted to registered users only Download (21MB) |
The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require real-time video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.
Item Type: |
Thesis (Dissertation) |
---|---|
Division/Institute: |
08 Faculty of Science > Institute of Computer Science (INF) > Communication and Distributed Systems (CDS) 08 Faculty of Science > Institute of Computer Science (INF) |
UniBE Contributor: |
Lima do Rosario, Denis, Braun, Torsten |
Subjects: |
000 Computer science, knowledge & systems 500 Science > 510 Mathematics |
Language: |
English |
Submitter: |
Dimitrios Xenakis |
Date Deposited: |
22 Aug 2014 10:58 |
Last Modified: |
05 Dec 2022 14:36 |
BORIS DOI: |
10.7892/boris.54997 |
URI: |
https://boris.unibe.ch/id/eprint/54997 |