A Lagrangian Analysis of the Northern Hemisphere Subtropical Jet

Martius, Olivia (2014). A Lagrangian Analysis of the Northern Hemisphere Subtropical Jet. Journal of the atmospheric sciences, 71(7), pp. 2354-2369. American Meteorological Society 10.1175/JAS-D-13-0329.1

[img]
Preview
Text
jcli-d-13-00531%2E1.pdf - Published Version
Available under License Publisher holds Copyright.
© Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org.

Download (3MB) | Preview

This study presents a 5-yr climatology of 7-day back trajectories started from the Northern Hemisphere subtropical jet. These trajectories provide insight into the seasonally and regionally varying angular momentum and potential vorticity characteristics of the air parcels that end up in the subtropical jet. The trajectories reveal preferred pathways of the air parcels that reach the subtropical jet from the tropics and the extratropics and allow estimation of the tropical and extratropical forcing of the subtropical jet.

The back trajectories were calculated 7 days back in time and started every 6 h from December 2005 to November 2010 using the Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) dataset as a basis. The trajectories were started from the 345-K isentrope in areas where the wind speed exceeded a seasonally varying threshold and where the wind shear was confined to upper levels.

During winter, the South American continent, the Indian Ocean, and the Maritime Continent are preferred areas of ascent into the upper troposphere. From these areas, air parcels follow an anticyclonic pathway into the subtropical jet. During summer, the majority of air parcels ascend over the Himalayas and Southeast Asia.

Angular momentum is overall well conserved for trajectories that reach the subtropical jet from the deep tropics. In winter and spring, the hemispheric-mean angular momentum loss amounts to approximately 6%; in summer, it amounts to approximately 18%; and in fall, it amounts to approximately 13%. This seasonal variability is confirmed using an independent potential vorticity–based method to estimate tropical and extratropical forcing of the subtropical jet.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Institute of Geography > Physical Geography > Unit Impact
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)
08 Faculty of Science > Institute of Geography
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR) > MobiLab

UniBE Contributor:

Romppainen-Martius, Olivia

Subjects:

500 Science > 550 Earth sciences & geology
900 History > 910 Geography & travel

ISSN:

0022-4928

Publisher:

American Meteorological Society

Language:

English

Submitter:

Monika Wälti-Stampfli

Date Deposited:

25 Sep 2014 16:10

Last Modified:

05 Dec 2022 14:36

Publisher DOI:

10.1175/JAS-D-13-0329.1

BORIS DOI:

10.7892/boris.57918

URI:

https://boris.unibe.ch/id/eprint/57918

Actions (login required)

Edit item Edit item
Provide Feedback